2005 $BG/$N$J$s$G$b%;%_%J!<(B


12 $B7n(B 8 $BF|!'2.86E/J?;a!XB?JQ?tJ#AG2r@OF~Lg!Y(B

$BA02s$OB?JQ?t@5B'4X?t$N4pK\E*@-$B:#2s$O%Y%-5i?t$N<}B+NN0h$K$D$$$F=R$Y$F!$6qBNNc$r>/$78+$F$_$?$$$H;W$$$^$9!%(B

$B:G=i$K7Z$/A02s$NI|=,$r$9$k$N$GA02s$3$l$J$+$C$??M$b$<$RMh$F$/$@$5$$!%(B


12 $B7n(B 1 $BF|!'0$It5*9T;a!XI=8=$KIU?o$9$k$$$/$D$+$NITJQNL$K$D$$$F!Y(B

$B?t3XE*$JBP>]$KITJQNL$r3d$jEv$F!$$=$NITJQNL$rD4$Y$k$3$H$K$h$C$F$b$H$b$H$N(B$BBP>]$rD4$Y$k!$$H$$$&oEe$B$b$=$l$ONc30$G$O$J$/!$I=8=$KBP$7$$$/$D$+$NITJQNL$,Dj5A$5$l$^$9!%(B

$B:#2s$O!$$=$N$h$&$JITJQNL$N$&$A!$(BGelfand-Kirillov$BR2p$7$?$$$H;W$$$^(B$B$9!%M-8Bl9g$O$=$N$B$9$,!$L58B$B$r;}$A$^$9!%Nc$($P!$M6F3$9$k$3$H$K$h$j:n$i$l$?I=8=$OHf3SE*!VBg$-$J!WI=8=(B$B$H$J$j!$(BGelfand-Kirillov$B

$B%;%_%J!<$G$O!$(BGelfand-Kirillov$BZ(B$BL@!%$^$?!$$$$/$D$+4JC1$JI=8=$KBP$7!$$=$N(BGelfand-Kirillov$B$B$7$F$_$?$$$H;W$$$^$9!%(B

$B5DO@$K$OKX$I@~7ABe?t$7$+;H$$$^$;$s!%(BLie$B4DO@$K47$l?F$7$s$G$$$k$HJ9$-$d$9(B$B$$$H$O;W$$$^$9$,!$CN$i$J$/$F$bBg>fIW$G$9!%(B


11 $B7n(B 24 $BF|!'2.86E/J?;a!XB?JQ?tJ#AG2r@OF~Lg!Y(B

$B0lJQ?t$N@5B'4X?t$N>l9g$HF1MM!$B?JQ?t$N@5B'4X?t$K$*$$$F$b(Bpolydisc$B$H$$$&1_HD$ND>@Q$G$"$kNN0h$G(BCauchy$B$N(B$B@QJ,8x<0$,@.$jN)$A!$$=$N7O$H$7$F(BCauchy$B$NITEy<0!$0lCW$NDjM}!$:GBgCM86M}$J$I$,@.N)$7!$@5B'4X?t$,6I=jE*(B$B$K%Y%-5i?tE83+$G$-$k$3$H$b$o$+$j$^$9!%(B

$B0lJQ?t$N>l9g!$86E@$r4^$`NN0h(BD$B>e$NG$0U$N@5B'4X?t$N86E@Cf?4$N%Y%-5i?tE83+$,(BD$B$r4^$`NN0h$G<}B+$9$k$?$a$K(B$B$O(BD$B$,86E@Cf?4$N(Bdisc$B$G$"$k$3$H$,I,MW==J,>r7o$G$9$,!$B?JQ?t$G$O(BReinhardt$BNN0h$H8F$P$l$kNN0h$,$3$l$KAjEv(B$B$7$^$9!%(B

$B:#2s$N%;%_%J!<$G$O@5B'4X?t$NDj5A$+$i;O$a$F!$(BCauchy$B$N@QJ,8x<0$H!$$=$3$+$iF3$+$l$kB?JQ?t@5B'4X?t$N4pK\(B$BE*$J@-$B$^$?!$M>M5$,$"$l$P!$0lJQ?t$N<}B+1_$KBP1~$9$k!$%Y%-5i?t$N<}B+NN0h$K$D$$$F$b=R$Y$?$$$H;W$$$^$9!%(B

$BM=HwCN<1$O0lJQ?tJ#AG2r@O$N4pK\E*$JCN<1!JJ#AG2r@O3X-5$NFbMFDxEY!K$,$"$l$P==J,$G$9!%(B

$B;29MJ88%!'(B
[1]LARS HORMANDER An Introduction to COMPLEX ANALYSIS IN SEVERAL VARIABLES


11 $B7n(B 17 $BF|!';32<29;a!X(BToruńczyk $B$NDjM}$H$=$N1~MQ!Y(B

$B$B%"%$%G%#%"$r=E;k$7$FC;$$;~4V$G$d$j$^$9!%(B$BA02s<($7$?$3$H$K$D$$$F$OE,59!$@bL@$r2C$($^$9$N$GA02sMh$J$+$C$??M$bBg>fIW$G$9!%(B


11 $B7n(B 10 $BF|!';32<29;a!X(BToruńczyk $B$NDjM}$H$=$N1~MQ!Y(B

$B%3%s%Q%/%HB?MMBN(B M $B$N<+8JF1Aj72(B Homeo(M) $B$K%3%s%Q%/%H3+0LAj(B$B!J0lMM<}B+0LAj!K$rF~$l$?0LAj72$N6I=jE*$J0LAjE*@-$B$"$k0UL#$G$O0LAj6u4VO@$NLdBj$H8F$V$3$H$b$G$-$^$9$,!$(B1960$BG/Be$K(B R. D. Anderson $B$,Ds>'$7$F0JMh!$0lHL$N(B n $B$K$D$$$F$OL$2r7hLdBj$H$J$C$F$$$^$9!%(B

M $B$N$B$HF1Aj$J=89g$K$h$k3+HoJ$$r$b$D$3$H$,<($5$l$^$7$?!%(Bn $B$,(B 3 $B0J>e$G$"$C$F$b(B$BF1MM$N7k2L$r4|BT$9$k$3$H$,$G$-$^$9$,!$$=$N80$H$J$k$H;W$o$l$k$N$,(B1981$BG/$KH/I=$5$l$?(B H. Toruńczyk $B$NDjM}$G$9!%(BToruńczyk $B$NDjM}$O(B$B0lHL$K0LAj6u4V$,6I=jE*$K(B Hilbert $B6u4V$HF1Aj$G$"$k$?$a$NI,MW==J,>r7o(B$B$rM?$($^$9!%(B

$B:#2s$N%;%_%J!<$O$3$NDjM}$N>ZL@$N35MW$H!$1~MQ$K$D$$$F=R$Y$kM=Dj$G$9!%(B


10 $B7n(B 27 $BF|!'F~9>7D;a!X?t$N4v2?F~Lg!J#285#2

$BA02s$NH/I=$NB3$-$G$9!#0J2<$NFbMF$rM=Dj$7$F$$$^$9!#(B

$B#1!%(BMahler$B$N%3%s%Q%/%HDjM}(B
$B#n$B$=$3$K$O<+A3$K0LAj$rF~$l$k$3$H$,$G$-$^$9!#$=$N0LAj$rMQ$$(B$B$F3J;RNs(BM1,M2,\ldots$B$,3J;R(BM$B$K<}B+$9$k!"$H$$$&$3$H$rDj5A(B$B$9$k$3$H$,$G$-$^$9!#(BMahler$B$N%3%s%Q%/%HDjM}$H$O!"3J;RNs$,<}(B$BB+$9$kItJ,Ns$r;}$D$?$a$N==J,>r7o$rM?$($k6/NO$JDjM}$G$9!#(B$B:#2s$NH/I=$G$O$=$N>ZL@$H $B#2!%(BMordell$BK!$H#285#3 $BA02s$O!"(BMordell$BK!$N>R2p$H$7$F!"86E@BP>N$JBJ1_$,86E@0J30(B$B$K3J;RE@$r4^$^$J$$$?$a$N>r7o$K$D$$$F9M;!$7$^$7$?!#BJ1_$O(B$B#285#2$B7A<0$GDj5A$5$l$k?^7A$K$D$$$FF1MM$N9M;!$r9T$$!"(BMordell$BK!$,(B$B3hLv$9$k$5$^$r8+$?$$$H;W$$$^$9!#(B
$B#3!%$*$^$1(B
$BA02s!"#f$,ITDjCM#2l9g$N(B\frac{M(f)}{\sqrt{D(f)}}$B$NJ,I[(B$B$K$D$$$F$*OC$7$^$7$?!#$=$N;~=P$?$$$/$D$+$N5?LdE@$K$D$$$F!"(B$B

$B;29MJ88%!'(B
[1]J.W.S.Cassels An Introduction to the Geometry of Numbers
[2]A.Markoff Sur les formes binaires indefinies


10 $B7n(B 20 $BF|!'F~9>7D;a!X?t$N4v2?F~Lg!J#285#2

$B#n$B$=$l$i$N@0?t78?t7k9g$H$7$FI=$;$kE@A4BN$r3J;R$H$$$$$^$9!#(B$B?t$N4v2?$H$O!"#n$B3J;R$H$N4X78$rD4$Y$k?t3X$G$"$k$H$$$&$3$H$,=PMh$^$9!#(B

$BNc$H$7$F

$B#f(B(x,y)=ax2+bxy+cy2$B$r!"$B$3$3$G(Bx,y$B$K$=$l$>$l@0?tCM$rBeF~$7$?$H$-$N(Bf(x,y)$B$N@dBPCM$N2<8B(B$B$r(BMf$B$H$7!J$?$@$7(Bx=y=0$B$O=|$-$^$9!K!"(B
Nf= \frac{Mf}{\sqrt{Df}}
$B$H$7$^$9!%$?$@$7(BDf$B$O(Bf$B$NH=JL<0(Bb2-4ac$B$rI=$7$^$9!%(B$B$3$3$G!"(BNf$B$NCM$O!"(Bf$B$rDj?tG\$7$F$bITJQ$G$"$k$3$H$OMF0W$K3NG'$G$-(B$B$^$9!#$=$l$G$O!"(Bf$B$H$7$FE,@Z$JHO0O$K$"$k$b$N!J$?$H$($P@5DjCM7A<0(B$BA4BN$J$I!K$rA4$F9M$($?$H$-!"(BNf$BA4BN$O$I$N$h$&$J=89g$r$J$9$G$7$g$&$+!)(B

$B$9$0$KJ,$+$k$h$&$K$3$NLdBj$O1_(B/$BAP6J@~$NFbIt$H3J;RE@$H$N4X78(B$B$rLd$&$b$N$G$"$j!"$3$NLdBj$r9M$($k$3$H$G?t$N4v2?$NLLGr$5$rC$B$K46$8$H$k$3$H$,$G$-$^$9!#(B

$B:#2s$NH/I=$G$O!"$3$NLdBj$r9M$($k$3$H$rDL$7$F!"?t$N4v2?$N4pK\E*(B$B$JDjM}$dMordell$BK!!K$r>R2p$9$k$3$H$rL\I8$H$7$?$$$H$*$b$$$^$9!#(B

$B;~4V$KM>M5$,$"$l$P#2JQ?t#3l9g$K$D$$$F$b07$$$^$9!#(B

$BM=HwCN<1$OFC$K$"$j$^$;$s!##n$B$4$/=iJbE*$JCN<1$H9b9;?t3X$rCN$C$F$$$l$P$h$$$H;W$$$^$9!#(B

$B;29MJ88%!'(B
[1]J.W.S.Cassels An Introduction to the Geometry of Numbers


10 $B7n(B 13 $BF|!'0KF#E/;K;a!XAG?tH=DjK!$K$D$$$F!Y(B

$BAG?tH=DjK!$H$O!$M?$($i$l$?<+A3?t$,AG?t$G$"$k$+$I$&$+$rH=Dj(B$B$9$kJ}K!$N$3$H$G$9!%<+A3?t(B N $B$KBP$7!$(BN $B$,AG?t$G$"$k$?$a$N(B$BI,MW==J,>r7o$O!$(BN $B$,(B 2 $B!A(B N1/2 $B$N4V$K$"$k<+A3?t$G3d$j@Z$l(B$B$J$$$3$H$G$9!%$3$l$rAGD>$K3N$+$a$k$H9b!9(B N1/2 $B2s$N;n9T$,(B$BI,MW$K$J$j!$$3$NJ}K!$O!$(BN $B$N7e$,Bg$-$/$J$k$H!$$"$^$j8=$B$G$O$"$j$^$;$s!%(B

$B$=$3$G!$!X8zN(E*$JAG?tH=DjK!$,B8:_$9$k$+!)!Y!$$h$j@53N$K$O!$(B
$B!X(BN $B$KBP$7!$9b!9(B (log N)k $B$NDj?tG\$N2s?t$N;n9T$K$h$j!$(BN $B$,AG?t$G$"$k$+$I$&$+$rH=Dj$G$-$J$$$+!)!Y(B
$B$H$$$&LdBj$,9M$($i$l$^$9!%$3$l$O!$D9G/$NL$2r7hLdBj$G$7$?$,!$(B2002$BG/$N2F$K(B Agrawal-Kayal-Saxena $B$K$h$C$FH/8+$5$l$?AG?tH=DjK!(B$B$K$h$C$F!$9NDjE*$K2r7h$5$l$^$7$?!%$7$+$b!$(BAgrawal-Kayal-Saxena $B$NJ}K!$O!$9bEY$J8=Be?t3X$r0l@Z;H$o$J$$=iEyE*$J$b$N$G$7$?!%(B$B$3$N7k2L$O(B "PRIMES is in P" $B$H$b8F$P$l!$$$$m$$$m$J=j$GOCBj$K(B$B$J$C$?$N$G!$$I$3$+$G<*$K$7$??M$bB?$$$N$G$O$J$$$G$7$g$&$+!%(B
$B!t(B $B$b$7$+$7$?$i!$MhG/$"$?$j!$$^$?OCBj$K$J$k$+$b$7$l$^$;$s!%(B

$B:#2s$N%;%_%J!<$G$O!$(BAgrawal-Kayal-Saxena $B$NJ}K!$K$D$$$F!$(B$B$=$N?t3XE*$JB&LL$r!$$G$-$k$@$1=iEyE*$+$D(Bself-contained$B$K(B$B@bL@$7$?$$$H;W$$$^$9!%(B

$B$A$J$_$K!$(Bk $B$H$7$F$I$N0L$N?t$,Agrawal-Kayal-Saxena $B$NJ}K!$G$O!$A4$/=iEyE*$K!$(Bk = 10.5 + ε$B$,<($;$^$9!%:#2s$O!$$3$l$K$D$$$F@bL@$9$kM=Dj$G$9!%(B$B$5$i$KFq$7$$2r@O?tO@$N7k2L$r$A$g$C$H;H$&$H!$(Bk = 7.5 + ε $B$H(B$B$H$l$k$3$H$,>ZL@$G$-$^$9!%!J(Bk = 6 + ε $B$^$G2~NI$7$?!$$H$$$&(B$BOC$b$"$k$h$&$G$9!K(B$BM=A[$H$7$F$O!$F1$8J}K!$G(B k = 3 + ε $B$^$G2~NI$G$-$k$H4|BT$5$l$F(B$B$$$k$h$&$G$9$,!$$3$l$OL$2r7h$@$H;W$o$l$^$9!%(B

$BM=HwCN<1$G$9$,!$$B4pK\;v9`!JAG?t$NDj5A!$9gF1<0$N@-$BJ,$+$C$F$$$l$P!$$^$"!$$?$V$s==J,$G$9!%(B
$B!t(B $B7W;;NL$K$D$$$F$[$H$s$I@bL@$7$J$$!J$G$-$J$$!K$H;W$$$^$9$N$G!$(B$B!X(BP $B$C$F2?!)!Y$H$$$&?M$O!$C/$+>\$7$=$&$J?M$KJ9$$$F$/$@$5$$!%(B

$B;29MJ88%(B :

[1] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, Ann. of Math., 160(2), 781-793 (2004).
[2] F. Bornemann, PRIMES is in P: a breakthrough for "Everyman", Notices Amer. Math. Soc. 50 (2003), no. 5, 545--552.
$B$3$l0J30$K$b!$(BGoogle$B$G8!:w$9$l$P!$J88%$d2r@b5-;v$,Bt;3$R$C$+$+$j(B$B$^$9$,!$?t3XZL@(B" $B$,B?$$$N$G!$(B$B7k6I$O86O@J8(B [1] $B$,0lHVJ,$+$j$d$9$$$H!J8D?ME*$K$O!K;W$$$^$9!%(B
[2] $B$O!$0JA0$OL5NA$G%@%&%s%m!<%I$G$-$?$O$:$J$N$G$9$,!$(B$B:#$O$G$-$J$/$J$C$F$$$k$h$&$G$9!%!J(BGoogle$B$N%-%c%C%7%e$K$O;D$C$F(B$B$$$k$N$G!$K\J8$@$1$J$i5$9g$GFI$`$3$H$,$G$-$^$9!%$^$"!$?^=q4[$K(B$B9T$1$P$$$$$N$G$9$,!K(B

$BCm0U(B :

[1] (Ann. of Math. $B$K=PHG$5$l$?(Bversion) $B$N(B Lemma 4.3 $B$K$O(B ($B=iEyE*$J(B) "bug" $B$,$"$j$^$9!%(BAgrawal$B$N%[!<%`%Z!<%8(B$B$K$"$k(B "August, 2005 version (v6)" $B$G$OD>$C$F$$$k$N$G!$(B$B2K$J?M$O8+Hf$Y$F$_$^$7$g$&!%(B

10 $B7n(B 6 $BF|!'@>K\>-

$B:#=5$O@h=5=`Hw$7$?$3$H$rMQ$$$F>e1,$B!%!%(B,xm)$B$r9=@.$7(B,Roth$B$NDjM}$r>ZL@$7$^$9!%(B$B>ZL@$N;D$j$NItJ,$r40@.$5$;$?8e(B,$B;~4V$K1~$8$F(B$B1~MQNc$d(BRoth$B$NDjM}$NH/E87A$J$I$r>R2p$7$?$$$H;W$$$^$9!%(B

Roth$B$NDjM}$N>ZL@$NK\J,$/$i$$$O@h=5$K<($5$l$?;v$K$J$j$^$9$,(B,$B$=$N7k2L$rG'$a$FLc$($l$P;D$j$N>ZL@$O==J,M}2r=PMh$kFbMF$J$N$G(B,$BMh=5$+$iD0$-$KMh$?J}$b0l$D7k2L$rG'$a$k$H$$$&E@$r=|$$$F$OA4$/LdBj$"$j$^$;$s!%(B$B%;%_%J!<3+;O(B18:30$B$+$i(B10$BJ,DxEY(B,$BI,MW$H$J$kDj5A$d7k2L$K$D$$$F(B$BI|=,$7$h$&$H;W$&$N$G(B,$BITMW$H;W$&J}$O(B10$BJ,$/$i$$CY9o$7$F$/$k$HNI$$$+$b$7$l$^$;$s!#(B

$B$G$O$h$m$7$/$*4j$$$7$^$9!%(B


9 $B7n(B 29 $BF|!'@>K\>-

$BBe?tE*?t$NM-M}6a.$5$JM-M}?t$G6a;w$7$h$&$H(B$B$$$&$b$N$G!"$=$l$K$O$"$k $B!&DjM}(B(Liouville,1844)
n(>=2)$B
|α-p/q|>c/qn
$B$,@.$jN)$D!#(B
$B$H$$$&DjM}$,$"$j$^$9!#$3$NDjM}$K$h$l$P!"Be?tE*?t$NM-M}6a;w$K$O(B$BJ,Jl$N(Bn$B>h$K$h$k6a;w$N8B3&$,$"$k$H$$$&$3$H$,J,$+$j$^$9!#(B$B$3$N!V(Bn$B>h!W$KAjEv$9$kItJ,$r2~NI$9$kEXNO$N7k2L!"(B1955$BG/$K!"(B$B!V#n>h!W$NItJ,$r!V#2!\(Bε$B>h!W$K=q$-49$($F$bNI$$$h$H$$$&(BRoth$B$NDjM}$,<($5$l$^$7$?!#(B
$B!&DjM}(B(Roth,1955)
$BG$0U$N(Bn(>=2)$B
|α-p/q|>1/qκ
$B$N2r$O9b!9M-8B8D(B
$B0lJ}ITEy<0(B |α-p/q|<1/q2 $B$OL58B$KB?$/$N2r$r;}$D$3$H$,J,$+$k$N$G!"(B$B!V#2!\(Bε$B>h!W$H$$$&I>2A$O:GNI$G$"$k$H$$$&$3$H$,J,$+$j$^$9!#(B$B$D$^$j!"$3$N%?%$%W$NITEy<0$N2~NI$N!"(B1$B$D$N%4!<%k$H$J$j$^$7$?!#(B

$B:#2s07$&$N$O$3$N(BRoth$B$NDjM}$N>ZL@$G$9!#(B$B>ZL@$O0l8+D9$/J#;($G$9$,!"ZL@$H(B$B;w$?$h$&$J$b$N$G!"$=$l$r#nJQ?t$K3HD%$7$?46$8$K$J$C$F$$$^$9!#(B$B$3$ND9$/2?$,$d$j$?$$$N$+$h$/J,$+$i$J$$>ZL@$r!"(B$B$d$j$?$$;v$,J,$+$k$h$&$K@bL@=PMh$l$PNI$$$J$H;W$C$F$$$^$9!#(B

$BH/I=$OM>M5$r$b$C$F#22s$rM=Dj$7$F$$$^$9!#(B$B?J$_6q9g$K1~$8$F1~MQ$d$3$NDjM}$N$$$/$D$+$NH/E87A$J$I$H$$$C$?(B$B;v$bOC$=$&$+$H;W$C$F$$$^$9!#$G$O$h$m$7$/$*$M$,$$$7$^$9!#(B


9 $B7n(B 22 $BF|!'Gk867<;a!X(BHilbert$BBh(B3$BLdBj$N=tAj!Y(B

$B!VDlLL@Q$H9b$5$NEy$7$$(B2$B$D$N;MLLBN$OJ,3d9gF1$+!W(B
$B$3$l$,!"(B1900$BG/$N9q:]?t3X23$B$NLdBj$NFb$N(B1$B$D$G$"$j!"Bh(B3$BLdBj$HLCBG$?$l$F$$$k$b$N(B($B$N0lIt(B)$B$G$9!#(B$B$3$3$G!"(B2$B$D$NB?LLBN(B$P$$B$H(B$Q$$B$,J,3d9gF1(B($BKt$Onw9gF1(B)$B$G$"$k$H$O!"(B$B$3$l$i$r$=$l$>$l!"(B$P_1, \ldots , P_n$; $Q_1, \ldots , Q_n$$B$H(B$B4v$D$+$NB?LLBN$K>e$B3F(B$P_i$$B$H(B$Q_i$$B$,9gF1$H$J$k$h$&$K$G$-$k$3$H$r0UL#$7$^$9!#(B$B$3$NLdBj<+BN$O!"6O$+?t%u7n8e$K(BHilbert$B$N3X@8(BDehn$B$K$h$C$F(B$BA/$d$+$K2r7h$5$l$^$7$?$,!"Bh(B3$BLdBj$O9b$B99$K$OHs%f!<%/%j%C%I6u4V$K1w$$$F$b<+A3$KDj<02=$5$l$k$b$N$G$"$j!"(B$B$=$NKX$I$O:#$J$*L$2r7h$G$"$k$H$$$&$N$,8=>u$G$9!#(B$BL^O@$3$l$i$OC1$J$k0lHL2=$N$?$a$N0lHL2=$G$O$J$/!"(B$B$=$N$3$H$O!"@~7A72$N%[%b%m%8!<$dBe?tE*(B$K$$BM}O@!"(BChern-Simons$BITJQNL$dB?=EBP?t4X?t(B$B$H$$$C$?=t!9$N=EMW$J35G0!&M}O@$H!"$3$l$i!V0lHL2=$5$l$?Bh(B3$BLdBj!W$H$N(B$BL)@\$J7R$,$j$,6aG/$^$9$^$9L@$i$+$K$J$C$F$$$k;v$+$i$b1.$$CN$k$3$H$,=PMh$^$9!#(B

$B:#2s$O!"(BDehn$B!"(BSydler$B$K$h$kBh(B3$BLdBj$N(B$\mathbb{R}^3$-case$B$N>ZL@$H(B$B$=$N%[%b%m%8!$B9b$BB>J,Ln$H$N4X78$d$=$N8=>u$K$D$$$F>R2p$7$?$$$H;W$$$^$9!#(B

$BM=HwCN<1$H$7$F$O!"0LAj6u4VO@!"J#AG4X?tO@$H%[%b%m%8!$B$H;W$$$^$9!#(B


7 $B7n(B 7 $BF|!'>>K\M:Li;a!XA*Br8xM}$*$h$SO"B3BN2>@b$NL5L7=b@-!Y(B

$BA02s$NB3$-$G$9!#(B

$BA02s$O(B L $B$rDj5A$7$?$H$3$m$G=*$o$j$^$7$?!#(B

$B L $B$,(B ZF $B$N%b%G%k$G$"$k$3$H!"(B
L $B$K$*$$$F(B AC $B$d(B GCH $B$,@.N)$9$k$3$H!"(B
$B$f$($K(B AC $B$d(B GCH $B$,(B ZF $B$+$iL5L7=b$G$"$k$3$H!"(B
$B$r<($7$^$9!#(B


6 $B7n(B 30 $BF|!'>>K\M:Li;a!XA*Br8xM}$*$h$SO"B3BN2>@b$NL5L7=b@-!Y(B

$BA02s$NB3$-$G$9!#(B

$BA02s;W$C$?$[$I?J$^$J$+$C$?$N$G!"$*$=$i$/$"$H(B2$B2sKM$,OC$9$3$H$K$J$j$=$&$G$9!#(B

$B

$BA02s$NFbMF$O!"(B ZF $B$N8xM}$N@bL@$H!"=g=x?t!&4p?t$N=`Hw$@$C$?$N$G!"(B$B$3$NJ,Ln$NAGM\$,$"$kJ}$O!"


6 $B7n(B 23 $BF|!'>>K\M:Li;a!XA*Br8xM}$*$h$SO"B3BN2>@b$NL5L7=b@-!Y(B

$B!VA*Br8xM}(B (AC) $B$*$h$S(B $B0lHLO"B3BN2>@b(B (GCH) $B$,!"(BZF$B=89gO@$HL7=b$7$J$$!W(B
$B$H$$$&7k2L(B (Gödel, 1938-40) $B$r>R2p$7$^$9!#(B

$BA*Br8xM}$O!"L58B$NA*Br$K4X$9$k8xM}$G$"$C$F!"(B$B$3$N8xM}$+$i?t3X$N3FJ}LL$K$*$$$FM-MQ$JDjM}$,F3$+$l$^$9!#$?$H$($P!"(B
$B!&@0Ns2DG=DjM}!"(BZorn $B$NJdBj(B
$B!&(BTychonoff $B$NDjM}(B$B!J6u4VB2$N3F85$,(B compact $B$G$"$k$3$H$H$=$l$i$ND>@Q$,(B compact $B$G$"$k$3$H$OF1CM!K(B
$B!&BN>e$N%Y%/%H%k6u4V$K$O$+$J$i$:4pDl$,B8:_$9$k(B
$B!J

$B$^$?!"O"B3BN2>@b$O2D;;G;EY$HO"B3BNG;EY$NCf4V$NG;EY$,B8:_$7$J$$$3$H$r1900$BG/$N(B Hilbert $B$N(B23$BLdBj$NI.F,$K$b7G$2$i$l=EMW;k$5$l$F$$$^$7$?!#(B

$B$3$l$i$NL?Bj$,!"(B20$B@$5*=iF,$K(B Zermelo $B$i$K$h$j9=C[$5$l$?(BZF $B!J(BZermelo-Fraenkel$B!K8xM}7O$+$i>ZL@!J$"$k$$$OH?>Z!K$G$-$J$$$+(B$B$H$$$&LdBj$,1J$i$/=89gO@$NBgLdBj$H$J$C$F$$$^$7$?$,!"(BGödel $B$NL5L7=b@-$N>ZL@$K$h$j!">/$J$/$H$bH?>Z$O$G$-$J$$$3$H$,<($5$l$^$7$?!#(B

$B!J$J$*!"$B$=$N>ZL@$K$O(B forcing $B$H$$$&Fq$7$$M}O@$rMW$9$k$N$G!"(B$B:#2s$O$=$A$i$O3d0&$7L5L7=b@-$K$D$$$F$N$_OC$7$^$9!#!K(B

Gödel $B$N>ZL@$G$O!"!V%b%G%k!W$N35G0$,=EMW$H$J$j$^$9!#(B$B!J(BZF $B8xM}7O$N!K%b%G%k$H$O!"=89g$N=8$^$j!J@53N$K$O!"%/%i%9!K$G$"$C$F!"(B$B$=$NFbIt$G(B ZF $B$N3F8xM}$,@.N)$9$k$b$N$G$9!#(B$B$3$3$G!"$"$k$&$^$$%b%G%k(B L $B$r;}$C$F$/$k$H!"(BL $B$O(B ZF $B$N%b%G%k$G$"$k$3$H$H!"(BL $B$K$*$$$F(B AC $B$d(B GCH $B$,@.N)$9$k$3$H$,>ZL@$G$-$^$9!#(B$B$3$3$+$i!J(BZF $B$NL5L7=b@-$N2>Dj$N2<$G!K!"(BZF $B$H(B AC, GCH $B$,F1;~$K@.N)$7$?$H$7$F$bL7=b$,H/@8$7$J$$$3$H!"(B$B$9$J$o$A(B AC, GCH $B$N!JAjBP!KL5L7=b@-$,<($5$l$^$9!#(B

$BH/I=$NN.$l$H$7$F$O!"(B
$B!&(BZF $B8xM}7O$N354Q!J$*$h$S!"%/%i%9$N@bL@!K(B
$B!&=89gO@$+$i$N=`Hw!J=g=x?t!"4p?t!K(B
$B!&%b%G%kO@!!!c$3$N$"$?$j$+$i(B2$B=5L\!)!d(B
$B!&(BL $B$NDj5A!"ZL@(B
$B$H$$$C$?46$8$rM=Dj$7$F$$$^$9!#(B$B$J$*!"=`Hw$,D9$/$J$j$=$&$J$N$G!"(B$B$*$=$i$/(B2$B=50J>e$K$o$?$C$FH/I=$9$k$3$H$K$J$k$H;W$$$^$9!#(B

$BM=HwCN<1$O$"$^$j2>Dj$7$^$;$s!#(B$B$_$J$5$^$N;22C$r$*BT$A$7$F$$$^$9!#(B


6 $B7n(B 16 $BF|!';0;^MN0l;a!X(BLefschetz$B@W8x<0$K$D$$$F$N(BDeligne$BM=A[$N>R2p!Y(B

$BA02s$NB3$-$G$9!%(B$BMh=5$OK\Bj$G$"$k(BDeligne$BM=A[$K$D$$$F>R2p$r9T$&M=Dj$G$9!%(B


6 $B7n(B 9 $BF|!';0;^MN0l;a!X(BLefschetz$B@W8x<0$K$D$$$F$N(BDeligne$BM=A[$N>R2p!Y(B

Lefschetz$B$N@W8x<0$H$O!$B?MMBN(B X $B$+$i<+J,<+?H$X$N* $B$N@W!J%H%l!<%9!K$N8rBeOB$GI=$9$H$$$&$b$N$G$9!%(B$B:#2s$N%;%_%J!<$G$O!$M-8BBN>e$NBe?tB?MMBN$KBP$9$k(BLefschetz$B@W8x<0$N@:L)2=$G$"$k(BDeligne$BM=A[$K$D$$$F>R2p$7$^$9!%$J$*!$$3$NM=A[$O(B
$B!&6J@~$N>l9g!J(BIllusie, SGA5$B!K(B
$B!&@5I8?t$NFC0[E@2r>C$r2>Dj$7$?>l9g!J(BPink$B!K(B
$B$J$I$NItJ,E*7k2L$r7P$F!$F#860l9(;a$NGn;NO@J8!J(B1997$BG/=PHG!K$K$*$$$F40A4$K2r7h$5$l$F$$$^$9!%(B$B:G6a!J(B2005$BG/(B5$B7n(B15$BF|!K(BVarshavsky$B$K$h$C$FBgJQ4JC1$JJL>ZL@$,H/I=$5$l$?(B$B!J%"%J%&%s%9!'(BarXiv, math.AG/0505314$B!%(B$B>\:Y!'(Bmath.AG/0505564$B!K$N$G!$(B$B$=$l$r>R2p$7$h$&$H$$$&4k2h$G$9!%(B

$B%;%_%J!<$NA0H>$G$O!$%3%[%b%m%8!$B$=$NE57?E*$J1~MQ$K$D$$$F=R$Y$?$$$H;W$$$^$9!%$5$i$K(BDeligne$BM=A[$NBg$^$+$J$B>R2p$7!$F#86;a!$(BVarshavsky$B$N%"%W%m!<%A$K$D$$$F354Q$7$^$9!%(B$B$3$NItJ,$O3XIt@8$N3'$5$s$X$N%3%[%b%m%8!<$N>R2p$r7s$M$F$*$j!$;22C$B$$$?$@$1$k$h$&;n$_$k$D$b$j$G$9!%(B$B8eH>$G$O!$(BLefschetz-Verdier$B7?$N@W8x<0$K$D$$$F4JC1$KI|=,$7!$(BDeligne$BM=A[$N@53N$J(B$B%9%F!<%H%a%s%H$r=R$Y$^$9!%$=$N8e!$(BVarshavsky$B$N>ZL@$r>R2p$7$?$$$H;W$$$^$9!%(B

$BM=HwCN<1!'(B

$BA0H>It$rM}2r$9$k$K$O!$2?$+(B1$B$D%3%[%b%m%8!$B!J;d$,0JA09T$C$?AX78?t%3%[%b%m%8!<$N%;%_%J!<$rD0$$$??M$O$=$l$G==J,$G$9!%!K(B$B8eH>It$O%9%-!<%`O@!$%(%?!<%k%3%[%b%m%8!$B!J(BEGA + SGA + Verdier, Asterisque 239 $B$G>e$+$i2!$5$($i$l$^$9!K$r2>Dj$7$^$9!%(B$B$H$O$$$(!$$3$l$i$rCN$i$J$$?M$K$bJ70O5$$OEA$o$k$h$&$K$7$?$$$H;W$$$^$9!%(B

$B$<$R3'$5$s5$7Z$KJ9$-$KMh$F$/$@$5$$!%(B$B%"%V%9%H%i%/%H$N8+$+$1$h$j$-$C$HFq$7$/$J$$$H;W$$$^$9!%(B


6 $B7n(B 2 $BF|!'6aF#9(

$B72(B G $B$KBP$7$F$=$N<+8JF17?A4BN$,$J$972(B Aut(G) $B$r9M$($^$9!#(BG $B$N85(B g $B$KBP$7$F!"(Bg $B$r6&Lr$K:nMQ$5$;$k(B G $B$+$i(B G $B$X$N$B72=`F17?(B G $B"*(B Aut(G) $B$,F@$i$l$^$9!#(B$B0lHL$K$3$NG $B$NCf?4$,<+L@$N$H$-$OC1$B<($9$3$H$,$G$-$^$9!#(B

$B$3$l$h$j!"(BG $B$NCf?4$,<+L@$G$"$k$H$-$K$O!"(B$B>e$NC1 G $B">(B Aut(G) $B">(B Aut(Aut(G)) $B">(B Aut(Aut(Aut(G))) $B">!D(B
$B$H$$$&Ns$,F@$i$l$^$9!#(B$B$3$l$r(B G $B$N(B Automorphism Tower $B$H$$$$!"(B$B$3$NNs$,$$$D;_$^$k!J$"$k$H$3$m$h$j@h$OF1$872$,B3$/!K$+$H$$$&$3$H$r(B$BLdBj$K$9$k$3$H$,$G$-$^$9!#(B

$B:#2s>R2p$9$k$N$O!"(BWielandt $B$K$h$C$F(B 1939 $BG/$K<($5$l$? G $B$,M-8B72$J$i$P!"(BG $B$N(B Automorphism Tower $B$OI,$:;_$^$k!#(B

$B%;%_%J!<$G$O!"!J>e$K=R$Y$?$h$&$J46$8$G!K(BAutomorphism Tower$B$rDj5A$7$F(B$B$$$/$D$+$NNc$r8+$?8e!"(BWielandt $B$NDjM}$N>ZL@$r>R2p$7$^$9!#(B$B;~4V$N4X78$G0lIt>ZL@$r>J$/$3$H$K$J$j$^$9$,!"(B$B>ZL@$N%"%$%G%"$dJ70O5$$,EA$o$k$h$&$JH/I=$K$G$-$l$P$H;W$$$^$9!#(B$B$A$J$_$K!">e$NNs$rG$0U$N=g=x?t2s7+$jJV$7$?Ns$r9M$($k$3$H$b$G$-$^$9$,!"(B$B:#2s$O?($l$^$;$s!#(B

$BM=HwCN<1$H$7$F$O!"(B3 $BG/@8DxEY$N72$K$D$$$F$NCN<1$,$"$l$P==J,$G$9!#(B$B6qBNE*$K$O!"8r49;R$H$+<+8JF17?72$H$+$r8+$?$3$H$,$"$C$F(B$B72(B G $B$NItJ,72$H>jM>72(B G/N $B$NItJ,72$NBP1~$rCN$C$F$$$l$PM>M5$J$/$i$$$G$9!#(B$B$_$J$5$^$N;22C$r$*BT$A$7$F$$$^$9!#(B


5 $B7n(B 26 $BF|!':#0fD>5#;a!X(BGalois category$B!Y(B

$BA02s$NB3$-$G$9!#(BGalois category$B$+$i4pK\72$r9=@.$9$kJ}K!$r>R2p$7$h$&$H;W$$$^$9!#(B


5 $B7n(B 20 $BF|!'5HED515A;a!X(BPEL $B;VB$B!JHV30JT!K(B


5 $B7n(B 19 $BF|!':#0fD>5#;a!X(BGalois category$B!Y(B

$B:#2s$N%;%_%J!<$G$O!"(Bscheme$B$KBP$7$F4pK\72$rBe?tE*$K9=@.$9$kJ}K!$r>R2p$7$?$$$H;W$$$^$9!#(B

$B0lHL$K0LAj6u4V$KBP$7$F4pK\72$rDj5A$9$k:]!"(B$BC10LJD6h4V(B I $B$+$i$NO"B3scheme$B$N7w$K$*$$$F$OC10LJD6h4V$K$"$?$k$b$N$O$"$j$^$;$s!#(B

$B$=$3$GHoJ$6u4V$NM}O@$rMQ$$$F4pK\72$rDj5A$9$k$3$H$r9M$($^$9!#(B$BO"7k$J(Bscheme X $B$NHoJ$6u4V$K$"$?$k(B X $B>e$N(Bfinite etale scheme$B$N$J$97w$H!"(B$B$H$"$k(Bfunctor$B$r9M$($k$H!"$3$l$O(BGalois category$B$H8F$P$l$k(BGalois$BM}O@$,@.N)$9$k7w$N8xM}$rK~$?$7$^$9!#(B

$B0lHL$K(BGalois category$B$+$i4pK\72$r9=@.$9$k$B$3$3$K$*$$$F(Bscheme$B$N4pK\72$NBe?tE*9=@.$H$$$&L\I8$,C#$;$i$l$?$3$H$K$J$j$^$9!#(B

$BM=HwCN<1$H$7$F$O7wO@$N4pK\E*$J8@MU$r2>Dj$7$F!"(Bscheme$BO@$rCN$i$J$/$F$bBgBN$o$+$k$h$&$KOC$=$&$H;W$$$^$9!#(B$B$J$N$G(Bscheme$BO@$r%U%k$K;H$&ItJ,$O4pK\E*$K>ZL@$O>JN,$9$k$3$H$K$J$k$G$7$g$&!#(B$B$H$O$$$((Bscheme$B$rA4$/CN$i$J$$$H$h$/$o$+$i$J$$$H$3$m$b$"$k$+$H;W$&$N$G!"(Bscheme$B$NDj5A$rCN$i$J$$$H$$$&?M$O(B15$BJ,$[$IAa$/Mh$F$$$?$@$1$l$P(B$B4JC1$K(Bscheme$B$N@bL@$r$7$h$&$H;W$$$^$9!#(B


5 $B7n(B 12 $BF|!':4LnB@O:;a!X%H%]%m%8!

$B8x<0$r<($9$?$a$NF;6q$OBgBN$=$m$C$?$N$G!"$d$C$H(BLefschetz$B$N0lCWE@8x<0$r>ZL@$7$?$$$H;W$$$^$9!#(B$B:#2s$G:G8e$G$9!#D9!9$H<:Ni$$$?$7$^$7$?!#(B


4 $B7n(B 21 $BF|!':4LnB@O:;a!X%H%]%m%8!

$BA02s$G0l1~M=HwCN<1$,=*$o$C$?$o$1$G$9$,!"M=HwCN<1$r;H$&>l=j$O%]%D%]%D$H$7$+$J$$5$$,$7$F$-$^$7$?!#(B$B$B%A%'%C%/%3%[%b%m%8!<72$r(BENR$B$N6I=j%3%s%Q%/%HItJ,=89g$KBP$7$FF3F~$7$?$$$H;W$$$^$9!#(B$B$^$@K\JT$H$O$$$($J$$$N$G


4 $B7n(B 14 $BF|!':4LnB@O:;a!X%H%]%m%8!

$BA02s$NB3$-$G(BLefschetz$B$N0lCWE@8x<0$r>ZL@$9$k$N$KI,MW$JM=HwCN<1$r@bL@$7$^$9!#(B


3 $B7n(B 10 $BF|!':4LnB@O:;a!X%H%]%m%8!

$B8~$-$NIU$$$?B?MMBN(BN,M$B4V$N(B2$B$D$NO"B3$B$3$l$O$"$k2>Dj$N2<$G!"(Bg$B$+$iDj$^$k=`F17?$H(Bf$B$N(BGysin$B=`F17?$N9g@.$KBP$9$k(BLefschetz$B?t$H!"(BM$B$N4pK\%3%[%b%m%8!Lefschetz$B?t$O$B>e$N(BLefschetz$B?t$,(B0$B$G$J$1$l$P(Bf,g$B$O$"$kE@$G0lCW$9$k!"$H$$$&(BLefschetz$B$N0lCWE@DjM}$O(B$B0lCWE@8x<0$NFCJL$N>l9g$G$9!#(B$B0lCWE@8x<0$N>ZL@$K$O(BPoincare$BAPBP$H8F$P$l$kB?MMBN$N%[%b%m%8!<$NFCD'E*@-

$BF|Dx$NET9g>e4V$,6u$$$F$7$^$&$3$H$K$J$k>e!"H/I=1$B2sL\$O$H$j$"$($:%H%]%m%8!ZL@$KI,MW$JM=HwCN<1$K$D$$$F(B$BH/I=$9$k$H6&$KD0=0$N3'MM$K$465$BA4$F$K>ZL@$r$D$1$k$N$OIT2DG=$@$H;W$$$^$9$,!"M=HwCN<1$O8B$j$J$/%<%m$K6a$/$7$?$$$H;W$C$F$$$^$9!#(B


3 $B7n(B 3 $BF|!';32<29;a!X2DJ,(B Hilbert $B6u4V$,@~$N2D;;@Q$KF1Aj$G$"$k$3$H$K$D$$$F!Y(B

$BMh=5$O>ZL@$r=*$o$i$;$^$9!%(B$B;D$C$F$$$k$3$H$O!$(B
$B!&(B\ell2 $B$+$iE@$rDI$$=P$9(B
$B!&(B\ell2 $B$d(B \mathbb{R}\mathbb{N} $B$+$i(B$B$d$;$?=89g$rDI$$=P$9(B
$B!&F1Aj
$B!&2D;;8D$N$d$;$?=89g$rC`
$B$H$$$&$3$H$G$9!%(B$B$3$l$K$h$j!$F1Aj$r>ZL@$9$k$?$a$N:G8e$N>cJI$,=|$+$l$?$3$H$K$J$j$^$9!%(B

$B:G8e$K2?$r$d$C$?$N$+$rI|=,$7$?$$$H;W$$$^$9!%(B


2 $B7n(B 24 $BF|!';32<29;a!X2DJ,(B Hilbert $B6u4V$,@~$N2D;;@Q$KF1Aj$G$"$k$3$H$K$D$$$F!Y(B

$BA02s$K$R$-B3$$$F!$(B$B!J695A$N!)!K%H%]%m%8%+%k$J$B2DJ,(B Hilbert $B6u4V$H@~$N2D;;@Q$H$N(B$B4V$NF1Aj


2 $B7n(B 17 $BF|!';32<29;a!X2DJ,(B Hilbert $B6u4V$,@~$N2D;;@Q$KF1Aj$G$"$k$3$H$K$D$$$F!Y(B

$B2DJ,(B Hilbert $B6u4V$,@~$N2D;;@Q$KF1Aj$G$"$k$+$H$$$&(B$BLdBj$O!$0LAj6u4V$N;OAD$N0l?M$G$"$k(B Frechet [1] $B$d(B$B4X?t6u4V$N8&5f$r@9$s$K9T$C$?(B Banach [2] $B$K$h$j$9$G$KDs<($5$l$F$$$^$7$?!%(BBanach $B$O$3$NLdBj$KBP$7$F!$4V0c$C$FH]DjE*$JEz$r=P$7$F$b$$$^$9!%(B

$B@bL@$O!$(BAnderson and Bing [3] $B$K1h$C$F9T$$$^$9!%O@J8$N%?%$%H%k$K$"$kDL$j!$5DO@$OBgJQ=iEyE*(B$B$J$b$N$G$9$,!$L58B$B$,$U$s$@$s$K@9$j9~$^$l$F$*$j!$L58B$B=PH/E@$H$J$j$^$7$?!J(BBing $B$O$3$NB>$K(B3$B$B4v2?E*9M;!$K:,$6$7$?%H%]%m%8!<$rE83+$7$??M$H$7$F$bM-L>$G$9!K!%(B

$BM=HwCN<1$r%-!<%o!<%IE*$K=R$Y$^$9$H(B
$B!V40Hw5wN%6u4V!W!V!JL58B8D$N!KD>@Q6u4V!W!V(BTietze $B$N3HD%DjM}!W(B
$B$J$I$G$9!J=iEyE*$J>ZL@$G$"$k$3$H$,$*J,$+$j$$$?$@$1$k$G$7$g$&!K!%(B

$B!JM=Dj!K(B
$BDj5A!$%"%$%=%H%T!$BF1Aj$B%3%s%Q%/%H=89g$N2D;;OB$rDI$$=P$9!%(B

[1] M. Frechet, "Les espaces abstraits", Gauthier-Villars, Paris, 1928.
[2] S. Banach, "Theorie des operations lineaires", Monografie Mat. PWN, Warsaw, 1932
[3] R. D. Anderson and R H Bing. "A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines" Bull. Amer. Math. Soc. 74 (1968) 771-92.

2 $B7n(B 10 $BF|!'0$It5*9T;a!X:G9b%&%'%$%HM}O@$H$=$N1~MQ!Y(B

$B0l=5$"$-$^$7$?$,!$A02s$NB3$-$G$9!%FbMF$H$7$F$O0l1~A02sM=9p$7$?$b$N$rM=Dj(B$B$7$F$^$9$,!$>/$7JL$NOC$K$J$C$?$j$9$k$+$b$7$l$^$;$s!%(B


2 $B7n(B 3 $BF|!'0KF#E/;K;a!X<+M372$HLZ!Y(B

$B72$O?t$"$kBe?t7O$NCf$G$b!$:G$b4pK\E*$J$b$N$G$9!JH>72$NJ}$,4pK\E*(B$B$@$H$+!$%^%0%^$NJ}$,4pK\E*$8$c$J$$$+!$$H$$$&?M$O!$CV$$$H$$$F(B...$B!K!%(B$B$I$N$h$&$J72$b@8@.7O$H4X78<0$K$h$kI=<($r;}$A$^$9$,!$6qBNE*$KM?$($i$l$?(B$B72$KBP$7!$$=$N@8@.7O$H4X78<0$r6qBNE*$KD4$Y$k$3$H$O!$$=$l$[$IMF0W$J(B$B$3$H$G$O$"$j$^$;$s!%(B

$BNc$($P(B...

(1) $B9TNs<0$,(B1$B$H$J$k@0?t78?t$N(B2$BhK!(B$B$K4X$7$F72$r$J$7$^$9!%$H$3$m$G!$(BSL(2,Z) $B$O!$(B
$B!V(Ba,b $B$G@8@.$5$l!$4X78<0$,(B a4 = 1, (ab)3 = a2 $B$GM?$($i$l$?72!W(B
$B$HF17A$K$J$j$^$9!%2?8N$G$7$g$&$+!)(B
(2) $BA4$/4X78<0$r;}$?$J$$72$r!V<+M372!W$H$$$$$^$9!%<+M372$O72$NCf$G$b!$(B$B:G$b!VC1=c!W$J$b$N$G$9$,!$$=$N6qBNE*$J@-$B$"$j$^$;$s!%(B$BNc$($P!$0l8+Ev$?$jA0$K$b;W$($kL?Bj!X<+M372$NItJ,72$O<+M372$G$"$k!Y(B...$B$O$I$&$d$C$F>ZL@$7$?$i$$$$$N$G$7$g$&$+!)(B $B$^$?!$6qBNE*$J<+M372$N6qBNE*$JItJ,72$,M?$($i$l$?;~!$$=$N@8@.7O$O(B$B$I$N$h$&$K$9$l$PF@$i$l$k$N$G$7$g$&$+!)(B
(3) 3$B$D$N72(B G, H, A $B$HC1G $B$H(B H $B$N!V%"%^%k%,%`!W(B(amalgam, $B9gJ;(B)$B$H8F$P$l$k72(B G *A H $B$r(B$B:n$k$3$H$,$G$-$^$9!%%"%^%k%,%`$NDj5A$O$H$F$b!V4JC1!W$G!V6qBNE*!W(B$B$G$9$,!$6qBNE*$J72$N%"%^%k%,%`$,$I$N$h$&$K$J$k$N$+$O!$$=$l$[$I(B$BL@$i$+$J$3$H$G$O$"$j$^$;$s!%Nc$($P!$(BSL(2,Z) $B$O(B2$B$D$NM-8B=d2s72$N(B$B%"%^%k%,%`(B (Z/4Z) *Z/2Z (Z/6Z) $B$HF17A$K$J$j$^$9!%0lJ}$G!$(BSL(3,Z) $B$O(B2$B$D$N72$NHs<+L@$J%"%^%k%,%`$H$7$FI=$9$3$H$,$G$-$J$$!$(B$B$H$$$&$3$H$,CN$i$l$F$$$^$9(B... $B0lBN2?$,0c$&$N$G$7$g$&$+!)(B

$B:#2s$N!V$J$s$G$b%;%_%J!$B!VLZ!W(B(tree) $B$H8F$P$l$kAH$_9g$o$;O@E*BP>]$r9M;!$9$k$3$H$G!$(B$BA/$d$+$K2r7h$5$l$k$H$$$&$3$H$r>R2p$7$?$$$H;W$$$^$9!%(B

$BM=HwCN<1$O!$0l1~!$72O@$N=iJb!J$G$b(BSylow$B$NDjM}$O$$$j$^$;$s!K$H$7$^$9$,!$(B$B72$NDj5A$5$(CN$C$F$$$l$PM}2r$G$-$k$h$&$K?4$,$1$?$$$H;W$$$^$9!%(B$B$"$H!$(Bp$B?J?t$r0lEY$G$b8+$?$3$H$,$"$k$H!$J,$+$j$d$9$$ItJ,$b$"$k$+$b(B$B$7$l$^$;$s!%!J$=$l$G$OJ*B-$j$J$$!$$H$$$&?M$O!$;29MJ88%$G$bD/$a$F$_$k$+!$(B$B:G9b%&%'%$%H$N7W;;$G$b$7$F$*$$$F$/$@$5$$!K(B

$BM=Dj(B :

1.$B<+M372!$%"%^%k%,%`!$LZ(B
2.$BLZ$K:nMQ$9$k72(B
3.$B:nMQ$N4pK\NN0h$H%"%^%k%,%`(B
4.$B0K86$NDjM}(B

$B;29MJ88%(B :

J-P. Serre, Trees, Springer Monographs in Mathematics.

$B:#2s$NH/I=$NFbMF$G$O!$$3$NK\$NA0H>$G07$o$l$F$$$kFbMF$rOC$9M=Dj$G$9!%(B$BK\Ev$O!$(Bp$B?JBe?t72$NI=8=O@$d!$4X?tBN>e$N(B GL(2) $B$NN%;6ItJ,72$X$N1~MQEy!$(B$B$$$m$$$m$HLLGr$$%F!<%^$b$"$k$N$G$9$,!$$=$l$i$K$D$$$FOC$9;~4V$OL5$$$H(B$B;W$$$^$9$N$G!$6=L#$N$"$k?M$O!$$3$NK\$r;2>H$7$F$_$F$/$@$5$$!%(B


1 $B7n(B 27 $BF|!'0$It5*9T;a!X:G9b%&%'%$%HM}O@$H$=$N1~MQ!Y(B

$B!&(B$BM?$($i$l$?72$N4{LsI=8=$rA4$FJ,N`$;$h!%(B
$B!&(B$BM?$($i$l$?I=8=$r4{LsJ,2r$;$h!%(B

$B$H$$$&Fs$D$NLdBj$O!$I=8=O@$N:GBg$N%F!<%^$N0l$D$G$"$k$H$$$($^$9!%$3$NLdBj(B$B$O!$72$dI=8=$N%?%$%W$K$h$C$F$O2r7h$5$l$F$$$k$b$N$N!$$^$@$^$@L$2r7h$NItJ,(B$B$bB?$/!$0lHL$K$OFq$7$$LdBj$G$9!%(B

$B:G9b%&%'%$%HM}O@$O!$H>C1=c(BLie$B72$NM-8B$B$F!$>e5-Fs$D$NLdBj$N2r$rM?$($k$b$N$G$9!%$3$l$O!$7k2L<+BN$,=EMW$G$"$k$3$H(B$B$OL^O@$N$3$H!$99$KL58B$B$b=EMW$G$"$j!$8=Be$NH>C1=c(BLie$B72$NI=8=O@$K$H$C$F$J$/$F$O$J$i$J$$$b$N$G$"(B$B$k$H$$$($^$9!%(B

$B:#2s$O!$$^$:(BGL(n,\mathbb{C})$B$N@5B'I=8=$N>l9g$K:G9b%&%'%$%HM}O@$r>ZL@$7!$(B$B$=$l$rMQ$$$F!$$$$/$D$+$N>l9g$K6qBNE*$JJ,2r$r7W;;$7$?$$$H;W$$$^$9!%(B

$BM=Dj$O0J2<$NDL$j$G$9!%(B

$B#1!%:G9b%&%'%$%HM}O@(B
$B:G9b%&%'%$%HM}O@$rDj<02=$7!$>ZL@$r$D$1$^$9!%(B
$B#2!%(B(GL,GL)duality
n$B!_(Bk$BJ#AG9TNsA4BN$K$O!$:8$+$i(BGL(n,\mathbb{C})$B!$1&$+$i(BGL(k,\mathbb{C})$B$r:n(B$BMQ$5$;$k$3$H$,=PMh!$$=$N:nMQ$+$i$=$N>e$NB?9`<04D$O(BGL(n,\mathbb{C})$B!_(BGL(k,\mathbb{C})$BI=8=$H$_$k$3$H$,=PMh$^$9!%(B(GL,GL)duality$B$H$O!$$3$NI=8=$NJ,2r(B$B$rDL$8$F(BGL(n,\mathbb{C})$B$NI=8=$H(BGL(k,\mathbb{C})$B$NI=8=$,BP1~$9$k$H$$$&$b(B$B$N$G$9!%:G9b%&%'%$%HM}O@$rMQ$$$F!$$3$l$r<($7$?$$$H;W$$$^$9!%(B
$B#3!%ITJQ<0O@$NBh0lDjM}(B
$B#2$N$h$&$K!$B?9`<04D$K$"$k72$,:nMQ$7$F$$$k$H$-!$$=$NCf$G(BG$BITJQ$JB?9`<0A4(B$BBN$O4D$r$J$9$3$H$K$J$j$^$9!%$3$N4D$rD4$Y$k$N$,ITJQ<0O@$G$9$,!$:#2s$O$=$N(B$B@8@.85$rM?$($kDjM}$r>ZL@$7$?$$$H;W$$$^$9!%(B
$B#4!%(BSchur duality
(\mathbb{C}n)\otimes k$B$K$O<+A3$K(BGL(n,\mathbb{C})$B$,:nMQ$7$^$9$,!$0lJ}(B$B$G%F%s%=%k$N@.J,$rN72(BSk$B$b:nMQ$7$^$9!%$3$NI=8=(B$B$NJ,2r$K$h$j(BGL(n,\mathbb{C})$B$NI=8=$H(BSk$B$NI=8=$H$,BP1~$9$k$H$$$&$N$,(BSchur duality$B$G$9!%FC$K(Bn$B$,(Bk$B0J>e$N>l9g$O!$(BSk$B$N4{LsI=8=$,A4$F8=$l$k$3$H$,>ZL@=P(B$BMh$k$N$G!$$3$l$+$i(BSk$B$N4{LsI=8=$rJ,N`$9$k$3$H$b=PMh$^$9!%(B

$BFsF|4V$K$o$+$l$kM=Dj$K$J$C$F$$$k$N$G!$0lF|L\$O$^$::G9b%&%'%$%HM}O@$r$7$?(B$B$$$H;W$$$^$9!%;D$j$N1~MQ$OFsF|L\$K$J$k$H;W$$$^$9!%(B$BM=HwCN<1$H$7$F$O!$I=8=O@$N4pK\E*$J8@MU$dL?Bj!J(BSchur$B$NJdBjDxEY!K!$@~7ABe(B$B?t$HJ#AG4X?tO@!JElBg?t3X2J$,;M3X4|$K07$&FbMFDxEY!K$,$"$l$P==J,$G$9!%(B


1 $B7n(B 20 $BF|!'LnBt7<;a!X0LAj6u4V$N(BΓ-$B9=B$$H3+B?MMBN>e$NMUAX9=B$$NJ,N`$K$D$$$F!Y(B

$B%U%!%$%P!$B>e$N4v2?3XE*9=B$6I=jE*$K<+L@$J9=B$$rE=$j9g$o$;$F:n$i$l$F(B$B$$$k$3$H$,$h$/$"$j$^$9!#(B1958$BG/!"(BA.Haefliger$B$O$=$N$h$&$J9=B$$r0lHL2=$7$?35G0$G(B$B$"$k(BΓ-$B9=B$$$$&$b$N$rDj5A$7$^$7$?!#(B$B$=$7$F!"(B1970$BG/$K$O0LAj72$N$B9=B$$NJ,N`6u4V(BBΓ$B$,9=@.$G$-$k$3$H$r<($7!"3+B?MMBN>e(B$B$NMUAX9=B$$r$"$k$BJ,N`$7$^$7$?!#$3$NDjM}$O(BHaefliger$B$NMUAX9=$NJ,N`DjM}$H8F(B$B$P$l$k$b$N$G$9!#(B

$BDjM}<+BN$H$F$bH~$7$$$b$N$G$9$,!"(B$B;d$OB?MMBN$N9=B$$r(B"$BE=$j$"$o$;(B"$B$G5-=R$7$h$&$H$9$k(BΓ-$B9=B$$N35G0$NA3$5$K$b6/$$46LC$r$B;d$NH/I=$O!"$3$N46F0$rB>$N?M$K$bEA$($i$l$?$i$H;W$$9T$&(B$B$b$N$G$9!#(B$B:#2s$NH/I=$OFC$KB>$NJ,Ln$NJ}$,B?$$$H;W$o$l$k$N$G!"(B$B35G0$N<+A3$5$,EA$o$k$h$&$KG[N8$7$FH/I=$7$?$$$H;W$$$^$9!#(B

$BM=HwCN<1$OFC$KI,MW$"$j$^$;$s!#(BBrown$B$NI=8=DjM}$H(BGromov-Phillips$B$NDjM}$r;H$$$^$9$,!"(B$B@bL@$O$9$k$N$GCN$i$J$/$F$bLdBj$"$j$^$;$s!#(B

$B;~4V$N4X78$b$"$j!";vA0$K(BTeX$B$GA4$FBG$C$F$*$-H/I=$G$O35(B$BG0$N@bL@$K=EE@$r$$$F:Y$+$$>ZL@$O$"$^$j$7$J$$$h$&$K$7$^$9!#(BTeX,DVI$B%U%!%$%k$NCV$->l$O0J2<$G$9!#(Bhttp://www.ms.u-tokyo.ac.jp/~open/tex.html

$B!&;29MJ88%!'(B
$B!VKd$a9~$_$H$O$a9~$_!W(B $BB-N)@55W(B $B4dGH=qE9(B
$BH/I=$NFbMF$OKX$I$3$NK\$NBh#5>O$NFbMF$=$N$b$N$G$9!#(B


1 $B7n(B 13 $BF|!';3K\=$;J;a!X(BBrumer$B$NDjM}$H(BLeopoldt$BM=A[!Y(B

$BBe?tE*?t$NBP?t$N0l$BD61[?tO@$K$*$1$kM-L>$JDjM}$N0l$D$G$9$,!$(B$B:#2s$O$3$l$N(Bp$B?JHG!JIaDL$NBP?t4X?t$NBe$o$j$K!V(Bp$B?JBP?t4X?t!W$r;H$&!K(B$B$G$"$k(BBrumer$B$NDjM}$N>ZL@$r$7$?$$$H;W$$$^$9!%(B

$B$^$?$3$NDjM}$N1~MQ$H$7$F!V(BAbel$BBN$N(BLeopoldt$BM=A[!W$,F3$+$l$^$9!%(B$B$3$N1~MQ$K$D$$$F$b!J(BLeopoldt$BM=A[$N

$BBe?tBN$N@0?t4D$d(Bp$B?J?t$NDj5A!$$*$h$S4JC1$J@-Dj$7$^$9!%(BBaker$B$NDjM}$OCN$i$J$/$F9=$$$^$;$s!%(B