$BA02s$OB?JQ?t@5B'4X?t$N4pK\E*@-$B:#2s$O%Y%-5i?t$N<}B+NN0h$K$D$$$F=R$Y$F!$6qBNNc$r>/$78+$F$_$?$$$H;W$$$^$9!%(B
$B:G=i$K7Z$/A02s$NI|=,$r$9$k$N$GA02s$3$l$J$+$C$??M$b$<$RMh$F$/$@$5$$!%(B
$B?t3XE*$JBP>]$KITJQNL$r3d$jEv$F!$$=$NITJQNL$rD4$Y$k$3$H$K$h$C$F$b$H$b$H$N(B$BBP>]$rD4$Y$k!$$H$$$&
$B:#2s$O!$$=$N$h$&$JITJQNL$N$&$A!$(BGelfand-Kirillov$BR2p$7$?$$$H;W$$$^(B$B$9!%M-8Bl9g$O$=$N$B$9$,!$L58B$B$r;}$A$^$9!%Nc$($P!$M6F3$9$k$3$H$K$h$j:n$i$l$?I=8=$OHf3SE*!VBg$-$J!WI=8=(B$B$H$J$j!$(BGelfand-Kirillov$B
$B%;%_%J!<$G$O!$(BGelfand-Kirillov$BZ(B$BL@!%$^$?!$$$$/$D$+4JC1$JI=8=$KBP$7!$$=$N(BGelfand-Kirillov$B$B$7$F$_$?$$$H;W$$$^$9!%(B
$B5DO@$K$OKX$I@~7ABe?t$7$+;H$$$^$;$s!%(BLie$B4DO@$K47$l?F$7$s$G$$$k$HJ9$-$d$9(B$B$$$H$O;W$$$^$9$,!$CN$i$J$/$F$bBg>fIW$G$9!%(B
$B0lJQ?t$N@5B'4X?t$N>l9g$HF1MM!$B?JQ?t$N@5B'4X?t$K$*$$$F$b(Bpolydisc$B$H$$$&1_HD$ND>@Q$G$"$kNN0h$G(BCauchy$B$N(B$B@QJ,8x<0$,@.$jN)$A!$$=$N7O$H$7$F(BCauchy$B$NITEy<0!$0lCW$NDjM}!$:GBgCM86M}$J$I$,@.N)$7!$@5B'4X?t$,6I=jE*(B$B$K%Y%-5i?tE83+$G$-$k$3$H$b$o$+$j$^$9!%(B
$B0lJQ?t$N>l9g!$86E@$r4^$`NN0h(BD$B>e$NG$0U$N@5B'4X?t$N86E@Cf?4$N%Y%-5i?tE83+$,(BD$B$r4^$`NN0h$G<}B+$9$k$?$a$K(B$B$O(BD$B$,86E@Cf?4$N(Bdisc$B$G$"$k$3$H$,I,MW==J,>r7o$G$9$,!$B?JQ?t$G$O(BReinhardt$BNN0h$H8F$P$l$kNN0h$,$3$l$KAjEv(B$B$7$^$9!%(B
$B:#2s$N%;%_%J!<$G$O@5B'4X?t$NDj5A$+$i;O$a$F!$(BCauchy$B$N@QJ,8x<0$H!$$=$3$+$iF3$+$l$kB?JQ?t@5B'4X?t$N4pK\(B$BE*$J@-$B$^$?!$M>M5$,$"$l$P!$0lJQ?t$N<}B+1_$KBP1~$9$k!$%Y%-5i?t$N<}B+NN0h$K$D$$$F$b=R$Y$?$$$H;W$$$^$9!%(B
$BM=HwCN<1$O0lJQ?tJ#AG2r@O$N4pK\E*$JCN<1!JJ#AG2r@O3X-5$NFbMFDxEY!K$,$"$l$P==J,$G$9!%(B
$B;29MJ88%!'(B
[1]LARS HORMANDER An Introduction to COMPLEX ANALYSIS IN SEVERAL VARIABLES
$B$B%"%$%G%#%"$r=E;k$7$FC;$$;~4V$G$d$j$^$9!%(B$BA02s<($7$?$3$H$K$D$$$F$OE,59!$@bL@$r2C$($^$9$N$GA02sMh$J$+$C$??M$bBg>fIW$G$9!%(B
$B%3%s%Q%/%HB?MMBN(B M $B$N<+8JF1Aj72(B Homeo(M) $B$K%3%s%Q%/%H3+0LAj(B$B!J0lMM<}B+0LAj!K$rF~$l$?0LAj72$N6I=jE*$J0LAjE*@-$B$"$k0UL#$G$O0LAj6u4VO@$NLdBj$H8F$V$3$H$b$G$-$^$9$,!$(B1960$BG/Be$K(B R. D. Anderson $B$,Ds>'$7$F0JMh!$0lHL$N(B n $B$K$D$$$F$OL$2r7hLdBj$H$J$C$F$$$^$9!%(B
M $B$N$B$HF1Aj$J=89g$K$h$k3+HoJ$$r$b$D$3$H$,<($5$l$^$7$?!%(Bn $B$,(B 3 $B0J>e$G$"$C$F$b(B$BF1MM$N7k2L$r4|BT$9$k$3$H$,$G$-$^$9$,!$$=$N80$H$J$k$H;W$o$l$k$N$,(B1981$BG/$KH/I=$5$l$?(B H. Toruńczyk $B$NDjM}$G$9!%(BToruńczyk $B$NDjM}$O(B$B0lHL$K0LAj6u4V$,6I=jE*$K(B Hilbert $B6u4V$HF1Aj$G$"$k$?$a$NI,MW==J,>r7o(B$B$rM?$($^$9!%(B
$B:#2s$N%;%_%J!<$O$3$NDjM}$N>ZL@$N35MW$H!$1~MQ$K$D$$$F=R$Y$kM=Dj$G$9!%(B
$BA02s$NH/I=$NB3$-$G$9!#0J2<$NFbMF$rM=Dj$7$F$$$^$9!#(B
$B;29MJ88%!'(B
[1]J.W.S.Cassels An Introduction to the Geometry of Numbers
[2]A.Markoff Sur les formes binaires indefinies
$B#n$B$=$l$i$N@0?t78?t7k9g$H$7$FI=$;$kE@A4BN$r3J;R$H$$$$$^$9!#(B$B?t$N4v2?$H$O!"#n$B3J;R$H$N4X78$rD4$Y$k?t3X$G$"$k$H$$$&$3$H$,=PMh$^$9!#(B
$BNc$H$7$F
$B$9$0$KJ,$+$k$h$&$K$3$NLdBj$O1_(B/$BAP6J@~$NFbIt$H3J;RE@$H$N4X78(B$B$rLd$&$b$N$G$"$j!"$3$NLdBj$r9M$($k$3$H$G?t$N4v2?$NLLGr$5$rC
$B:#2s$NH/I=$G$O!"$3$NLdBj$r9M$($k$3$H$rDL$7$F!"?t$N4v2?$N4pK\E*(B$B$JDjM}$d
$B;~4V$KM>M5$,$"$l$P#2JQ?t#3l9g$K$D$$$F$b07$$$^$9!#(B
$BM=HwCN<1$OFC$K$"$j$^$;$s!##n$B$4$/=iJbE*$JCN<1$H9b9;?t3X$rCN$C$F$$$l$P$h$$$H;W$$$^$9!#(B
$B;29MJ88%!'(B
[1]J.W.S.Cassels An Introduction to the Geometry of Numbers
$BAG?tH=DjK!$H$O!$M?$($i$l$?<+A3?t$,AG?t$G$"$k$+$I$&$+$rH=Dj(B$B$9$kJ}K!$N$3$H$G$9!%<+A3?t(B N $B$KBP$7!$(BN $B$,AG?t$G$"$k$?$a$N(B$BI,MW==J,>r7o$O!$(BN $B$,(B 2 $B!A(B N1/2 $B$N4V$K$"$k<+A3?t$G3d$j@Z$l(B$B$J$$$3$H$G$9!%$3$l$rAGD>$K3N$+$a$k$H9b!9(B N1/2 $B2s$N;n9T$,(B$BI,MW$K$J$j!$$3$NJ}K!$O!$(BN $B$N7e$,Bg$-$/$J$k$H!$$"$^$j8=
$B$=$3$G!$!X8zN(E*$JAG?tH=DjK!$,B8:_$9$k$+!)!Y!$$h$j@53N$K$O!$(B
$B!X(BN $B$KBP$7!$9b!9(B (log N)k $B$NDj?tG\$N2s?t$N;n9T$K$h$j!$(BN $B$,AG?t$G$"$k$+$I$&$+$rH=Dj$G$-$J$$$+!)!Y(B
$B$H$$$&LdBj$,9M$($i$l$^$9!%$3$l$O!$D9G/$NL$2r7hLdBj$G$7$?$,!$(B2002$BG/$N2F$K(B Agrawal-Kayal-Saxena $B$K$h$C$FH/8+$5$l$?AG?tH=DjK!(B$B$K$h$C$F!$9NDjE*$K2r7h$5$l$^$7$?!%$7$+$b!$(BAgrawal-Kayal-Saxena
$B$NJ}K!$O!$9bEY$J8=Be?t3X$r0l@Z;H$o$J$$=iEyE*$J$b$N$G$7$?!%(B$B$3$N7k2L$O(B "PRIMES is in P" $B$H$b8F$P$l!$$$$m$$$m$J=j$GOCBj$K(B$B$J$C$?$N$G!$$I$3$+$G<*$K$7$??M$bB?$$$N$G$O$J$$$G$7$g$&$+!%(B
$B!t(B $B$b$7$+$7$?$i!$MhG/$"$?$j!$$^$?OCBj$K$J$k$+$b$7$l$^$;$s!%(B
$B:#2s$N%;%_%J!<$G$O!$(BAgrawal-Kayal-Saxena $B$NJ}K!$K$D$$$F!$(B$B$=$N?t3XE*$JB&LL$r!$$G$-$k$@$1=iEyE*$+$D(Bself-contained$B$K(B$B@bL@$7$?$$$H;W$$$^$9!%(B
$B$A$J$_$K!$(Bk $B$H$7$F$I$N0L$N?t$,
$BM=HwCN<1$G$9$,!$
$B!t(B $B7W;;NL$K$D$$$F$[$H$s$I@bL@$7$J$$!J$G$-$J$$!K$H;W$$$^$9$N$G!$(B$B!X(BP $B$C$F2?!)!Y$H$$$&?M$O!$C/$+>\$7$=$&$J?M$KJ9$$$F$/$@$5$$!%(B
$B;29MJ88%(B :
[1] | M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, Ann. of Math., 160(2), 781-793 (2004). |
[2] | F. Bornemann, PRIMES is in P: a breakthrough for "Everyman", Notices Amer. Math. Soc. 50 (2003), no. 5, 545--552. |
$BCm0U(B :
$B:#=5$O@h=5=`Hw$7$?$3$H$rMQ$$$F>e
Roth$B$NDjM}$N>ZL@$NK\
$B$G$O$h$m$7$/$*4j$$$7$^$9!%(B
$BBe?tE*?t$NM-M}6a.$5$JM-M}?t$G6a;w$7$h$&$H(B$B$$$&$b$N$G!"$=$l$K$O$"$k
n(>=2)$B
|α-p/q|>c/qn
$B$,@.$jN)$D!#(B
$B$H$$$&DjM}$,$"$j$^$9!#$3$NDjM}$K$h$l$P!"Be?tE*?t$NM-M}6a;w$K$O(B$BJ,Jl$N(Bn$B>h$K$h$k6a;w$N8B3&$,$"$k$H$$$&$3$H$,J,$+$j$^$9!#(B$B$3$N!V(Bn$B>h!W$KAjEv$9$kItJ,$r2~NI$9$kEXNO$N7k2L!"(B1955$BG/$K!"(B$B!V#n>h!W$NItJ,$r!V#2!\(Bε$B>h!W$K=q$-49$($F$bNI$$$h$H$$$&(BRoth$B$NDjM}$,<($5$l$^$7$?!#(B
$B!&DjM}(B(Roth,1955)
$BG$0U$N(Bn(>=2)$B
|α-p/q|>1/qκ
$B$N2r$O9b!9M-8B8D(B
$B0lJ}ITEy<0(B |α-p/q|<1/q2 $B$OL58B$KB?$/$N2r$r;}$D$3$H$,J,$+$k$N$G!"(B$B!V#2!\(Bε$B>h!W$H$$$&I>2A$O:GNI$G$"$k$H$$$&$3$H$,J,$+$j$^$9!#(B$B$D$^$j!"$3$N%?%$%W$NITEy<0$N2~NI$N!"(B1$B$D$N%4!<%k$H$J$j$^$7$?!#(B
$B:#2s07$&$N$O$3$N(BRoth$B$NDjM}$N>ZL@$G$9!#(B$B>ZL@$O0l8+D9$/J#;($G$9$,!"ZL@$H(B$B;w$?$h$&$J$b$N$G!"$=$l$r#nJQ?t$K3HD%$7$?46$8$K$J$C$F$$$^$9!#(B$B$3$ND9$/2?$,$d$j$?$$$N$+$h$/J,$+$i$J$$>ZL@$r!"(B$B$d$j$?$$;v$,J,$+$k$h$&$K@bL@=PMh$l$PNI$$$J$H;W$C$F$$$^$9!#(B
$BH/I=$OM>M5$r$b$C$F#22s$rM=Dj$7$F$$$^$9!#(B$B?J$_6q9g$K1~$8$F1~MQ$d$3$NDjM}$N$$$/$D$+$NH/E87A$J$I$H$$$C$?(B$B;v$bOC$=$&$+$H;W$C$F$$$^$9!#$G$O$h$m$7$/$*$M$,$$$7$^$9!#(B
$B!VDlLL@Q$H9b$5$NEy$7$$(B2$B$D$N;MLLBN$OJ,3d9gF1$+!W(B
$B$3$l$,!"(B1900$BG/$N9q:]?t3X
$B:#2s$O!"(BDehn$B!"(BSydler$B$K$h$kBh(B3$BLdBj$N(B$\mathbb{R}^3$-case$B$N>ZL@$H(B$B$=$N%[%b%m%8!
$BM=HwCN<1$H$7$F$O!"0LAj6u4VO@!"J#AG4X?tO@$H%[%b%m%8!
$BA02s$NB3$-$G$9!#(B
$BA02s$O(B L $B$rDj5A$7$?$H$3$m$G=*$o$j$^$7$?!#(B
$B
L $B$,(B ZF $B$N%b%G%k$G$"$k$3$H!"(B
L $B$K$*$$$F(B AC $B$d(B GCH $B$,@.N)$9$k$3$H!"(B
$B$f$($K(B AC $B$d(B GCH $B$,(B ZF $B$+$iL5L7=b$G$"$k$3$H!"(B
$B$r<($7$^$9!#(B
$BA02s$NB3$-$G$9!#(B
$BA02s;W$C$?$[$I?J$^$J$+$C$?$N$G!"$*$=$i$/$"$H(B2$B2sKM$,OC$9$3$H$K$J$j$=$&$G$9!#(B
$B
$BA02s$NFbMF$O!"(B ZF $B$N8xM}$N@bL@$H!"=g=x?t!&4p?t$N=`Hw$@$C$?$N$G!"(B$B$3$NJ,Ln$NAGM\$,$"$kJ}$O!"
$B!VA*Br8xM}(B (AC) $B$*$h$S(B $B0lHLO"B3BN2>@b(B (GCH) $B$,!"(BZF$B=89gO@$HL7=b$7$J$$!W(B
$B$H$$$&7k2L(B (Gödel, 1938-40) $B$r>R2p$7$^$9!#(B
$BA*Br8xM}$O!"L58B$NA*Br$K4X$9$k8xM}$G$"$C$F!"(B$B$3$N8xM}$+$i?t3X$N3FJ}LL$K$*$$$FM-MQ$JDjM}$,F3$+$l$^$9!#$?$H$($P!"(B
$B!&@0Ns2DG=DjM}!"(BZorn $B$NJdBj(B
$B!&(BTychonoff $B$NDjM}(B$B!J6u4VB2$N3F85$,(B compact $B$G$"$k$3$H$H$=$l$i$ND>@Q$,(B compact $B$G$"$k$3$H$OF1CM!K(B
$B!&BN>e$N%Y%/%H%k6u4V$K$O$+$J$i$:4pDl$,B8:_$9$k(B
$B!J
$B$^$?!"O"B3BN2>@b$O2D;;G;EY$HO"B3BNG;EY$NCf4V$NG;EY$,B8:_$7$J$$$3$H$r
$B$3$l$i$NL?Bj$,!"(B20$B@$5*=iF,$K(B Zermelo $B$i$K$h$j9=C[$5$l$?(BZF $B!J(BZermelo-Fraenkel$B!K8xM}7O$+$i>ZL@!J$"$k$$$OH?>Z!K$G$-$J$$$+(B$B$H$$$&LdBj$,1J$i$/=89gO@$NBgLdBj$H$J$C$F$$$^$7$?$,!"(BGödel $B$NL5L7=b@-$N>ZL@$K$h$j!">/$J$/$H$bH?>Z$O$G$-$J$$$3$H$,<($5$l$^$7$?!#(B
$B!J$J$*!"
Gödel $B$N>ZL@$G$O!"!V%b%G%k!W$N35G0$,=EMW$H$J$j$^$9!#(B$B!J(BZF $B8xM}7O$N!K%b%G%k$H$O!"=89g$N=8$^$j!J@53N$K$O!"%/%i%9!K$G$"$C$F!"(B$B$=$NFbIt$G(B ZF $B$N3F8xM}$,@.N)$9$k$b$N$G$9!#(B$B$3$3$G!"$"$k$&$^$$%b%G%k(B L $B$r;}$C$F$/$k$H!"(BL $B$O(B ZF $B$N%b%G%k$G$"$k$3$H$H!"(BL $B$K$*$$$F(B AC $B$d(B GCH $B$,@.N)$9$k$3$H$,>ZL@$G$-$^$9!#(B$B$3$3$+$i!J(BZF $B$NL5L7=b@-$N2>Dj$N2<$G!K!"(BZF $B$H(B AC, GCH $B$,F1;~$K@.N)$7$?$H$7$F$bL7=b$,H/@8$7$J$$$3$H!"(B$B$9$J$o$A(B AC, GCH $B$N!JAjBP!KL5L7=b@-$,<($5$l$^$9!#(B
$BH/I=$NN.$l$H$7$F$O!"(B
$B!&(BZF $B8xM}7O$N354Q!J$*$h$S!"%/%i%9$N@bL@!K(B
$B!&=89gO@$+$i$N=`Hw!J=g=x?t!"4p?t!K(B
$B!&%b%G%kO@!!!c$3$N$"$?$j$+$i(B2$B=5L\!)!d(B
$B!&(BL $B$NDj5A!"
$B$H$$$C$?46$8$rM=Dj$7$F$$$^$9!#(B$B$J$*!"=`Hw$,D9$/$J$j$=$&$J$N$G!"(B$B$*$=$i$/(B2$B=50J>e$K$o$?$C$FH/I=$9$k$3$H$K$J$k$H;W$$$^$9!#(B
$BM=HwCN<1$O$"$^$j2>Dj$7$^$;$s!#(B$B$_$J$5$^$N;22C$r$*BT$A$7$F$$$^$9!#(B
$BA02s$NB3$-$G$9!%(B$BMh=5$OK\Bj$G$"$k(BDeligne$BM=A[$K$D$$$F>R2p$r9T$&M=Dj$G$9!%(B
Lefschetz$B$N@W8x<0$H$O!$B?MMBN(B X $B$+$i<+J,<+?H$X$N
$B!&6J@~$N>l9g!J(BIllusie, SGA5$B!K(B
$B!&@5I8?t$NFC0[E@2r>C$r2>Dj$7$?>l9g!J(BPink$B!K(B
$B$J$I$NItJ,E*7k2L$r7P$F!$F#860l9(;a$NGn;NO@J8!J(B1997$BG/=PHG!K$K$*$$$F40A4$K2r7h$5$l$F$$$^$9!%(B$B:G6a!J(B2005$BG/(B5$B7n(B15$BF|!K(BVarshavsky$B$K$h$C$FBgJQ4JC1$JJL>ZL@$,H/I=$5$l$?(B$B!J%"%J%&%s%9!'(BarXiv, math.AG/0505314$B!%(B$B>\:Y!'(Bmath.AG/0505564$B!K$N$G!$(B$B$=$l$r>R2p$7$h$&$H$$$&4k2h$G$9!%(B
$B%;%_%J!<$NA0H>$G$O!$%3%[%b%m%8!
$BM=HwCN<1!'(B
$B$<$R3'$5$s5$7Z$KJ9$-$KMh$F$/$@$5$$!%(B$B%"%V%9%H%i%/%H$N8+$+$1$h$j$-$C$HFq$7$/$J$$$H;W$$$^$9!%(B
$B72(B G $B$KBP$7$F$=$N<+8JF17?A4BN$,$J$972(B Aut(G) $B$r9M$($^$9!#(BG $B$N85(B g $B$KBP$7$F!"(Bg $B$r6&Lr$K:nMQ$5$;$k(B G $B$+$i(B G $B$X$N
$B$3$l$h$j!"(BG $B$NCf?4$,<+L@$G$"$k$H$-$K$O!"(B$B>e$NC1
$B$H$$$&Ns$,F@$i$l$^$9!#(B$B$3$l$r(B G $B$N(B Automorphism Tower $B$H$$$$!"(B$B$3$NNs$,$$$D;_$^$k!J$"$k$H$3$m$h$j@h$OF1$872$,B3$/!K$+$H$$$&$3$H$r(B$BLdBj$K$9$k$3$H$,$G$-$^$9!#(B
$B:#2s>R2p$9$k$N$O!"(BWielandt $B$K$h$C$F(B 1939 $BG/$K<($5$l$? G $B$,M-8B72$J$i$P!"(BG $B$N(B Automorphism Tower $B$OI,$:;_$^$k!#(B
$B%;%_%J!<$G$O!"!J>e$K=R$Y$?$h$&$J46$8$G!K(BAutomorphism Tower$B$rDj5A$7$F(B$B$$$/$D$+$NNc$r8+$?8e!"(BWielandt $B$NDjM}$N>ZL@$r>R2p$7$^$9!#(B$B;~4V$N4X78$G0lIt>ZL@$r>J$/$3$H$K$J$j$^$9$,!"(B$B>ZL@$N%"%$%G%"$dJ70O5$$,EA$o$k$h$&$JH/I=$K$G$-$l$P$H;W$$$^$9!#(B$B$A$J$_$K!">e$NNs$rG$0U$N=g=x?t2s7+$jJV$7$?Ns$r9M$($k$3$H$b$G$-$^$9$,!"(B$B:#2s$O?($l$^$;$s!#(B
$BM=HwCN<1$H$7$F$O!"(B3 $BG/@8DxEY$N72$K$D$$$F$NCN<1$,$"$l$P==J,$G$9!#(B$B6qBNE*$K$O!"8r49;R$H$+<+8JF17?72$H$+$r8+$?$3$H$,$"$C$F(B$B72(B G $B$NItJ,72$H>jM>72(B G/N $B$NItJ,72$NBP1~$rCN$C$F$$$l$PM>M5$J$/$i$$$G$9!#(B$B$_$J$5$^$N;22C$r$*BT$A$7$F$$$^$9!#(B
$BA02s$NB3$-$G$9!#(BGalois category$B$+$i4pK\72$r9=@.$9$kJ}K!$r>R2p$7$h$&$H;W$$$^$9!#(B
$B:#2s$N%;%_%J!<$G$O!"(Bscheme$B$KBP$7$F4pK\72$rBe?tE*$K9=@.$9$kJ}K!$r>R2p$7$?$$$H;W$$$^$9!#(B
$B0lHL$K0LAj6u4V$KBP$7$F4pK\72$rDj5A$9$k:]!"(B$BC10LJD6h4V(B I $B$+$i$NO"B3
$B$=$3$GHoJ$6u4V$NM}O@$rMQ$$$F4pK\72$rDj5A$9$k$3$H$r9M$($^$9!#(B$BO"7k$J(Bscheme X $B$NHoJ$6u4V$K$"$?$k(B X $B>e$N(Bfinite etale scheme$B$N$J$97w$H!"(B$B$H$"$k(Bfunctor$B$r9M$($k$H!"$3$l$O(BGalois category$B$H8F$P$l$k(BGalois$BM}O@$,@.N)$9$k7w$N8xM}$rK~$?$7$^$9!#(B
$B0lHL$K(BGalois category$B$+$i4pK\72$r9=@.$9$k
$BM=HwCN<1$H$7$F$O7wO@$N4pK\E*$J8@MU$r2>Dj$7$F!"(Bscheme$BO@$rCN$i$J$/$F$bBgBN$o$+$k$h$&$KOC$=$&$H;W$$$^$9!#(B$B$J$N$G(Bscheme$BO@$r%U%k$K;H$&ItJ,$O4pK\E*$K>ZL@$O>JN,$9$k$3$H$K$J$k$G$7$g$&!#(B$B$H$O$$$((Bscheme$B$rA4$/CN$i$J$$$H$h$/$o$+$i$J$$$H$3$m$b$"$k$+$H;W$&$N$G!"(Bscheme$B$NDj5A$rCN$i$J$$$H$$$&?M$O(B15$BJ,$[$IAa$/Mh$F$$$?$@$1$l$P(B$B4JC1$K(Bscheme$B$N@bL@$r$7$h$&$H;W$$$^$9!#(B
$B8x<0$r<($9$?$a$NF;6q$OBgBN$=$m$C$?$N$G!"$d$C$H(BLefschetz$B$N0lCWE@8x<0$r>ZL@$7$?$$$H;W$$$^$9!#(B$B:#2s$G:G8e$G$9!#D9!9$H<:Ni$$$?$7$^$7$?!#(B
$BA02s$G0l1~M=HwCN<1$,=*$o$C$?$o$1$G$9$,!"M=HwCN<1$r;H$&>l=j$O%]%D%]%D$H$7$+$J$$5$$,$7$F$-$^$7$?!#(B$B$B%A%'%C%/%3%[%b%m%8!<72$r(BENR$B$N6I=j%3%s%Q%/%HItJ,=89g$KBP$7$FF3F~$7$?$$$H;W$$$^$9!#(B$B$^$@K\JT$H$O$$$($J$$$N$G
$BA02s$NB3$-$G(BLefschetz$B$N0lCWE@8x<0$r>ZL@$9$k$N$KI,MW$JM=HwCN<1$r@bL@$7$^$9!#(B
$B8~$-$NIU$$$?B?MMBN(BN,M$B4V$N(B2$B$D$NO"B3
$BF|Dx$NET9g>e4V$,6u$$$F$7$^$&$3$H$K$J$k>e!"H/I=
$BMh=5$O>ZL@$r=*$o$i$;$^$9!%(B$B;D$C$F$$$k$3$H$O!$(B
$B:G8e$K2?$r$d$C$?$N$+$rI|=,$7$?$$$H;W$$$^$9!%(B
$BA02s$K$R$-B3$$$F!$(B$B!J695A$N!)!K%H%]%m%8%+%k$J
$B2DJ,(B Hilbert $B6u4V$,@~$N2D;;@Q$KF1Aj$G$"$k$+$H$$$&(B$BLdBj$O!$0LAj6u4V$N;OAD$N0l?M$G$"$k(B Frechet [1] $B$d(B$B4X?t6u4V$N8&5f$r@9$s$K9T$C$?(B Banach [2] $B$K$h$j$9$G$KDs<($5$l$F$$$^$7$?!%(BBanach $B$O$3$NLdBj$KBP$7$F!$4V0c$C$FH]DjE*$JEz$r=P$7$F$b$$$^$9!%(B
$B@bL@$O!$(BAnderson and Bing [3]
$B$K1h$C$F9T$$$^$9!%O@J8$N%?%$%H%k$K$"$kDL$j!$5DO@$OBgJQ=iEyE*(B$B$J$b$N$G$9$,!$L58B$B$,$U$s$@$s$K@9$j9~$^$l$F$*$j!$L58B$B=PH/E@$H$J$j$^$7$?!J(BBing $B$O$3$NB>$K(B3$B$B4v2?E*9M;!$K:,$6$7$?%H%]%m%8!<$rE83+$7$??M$H$7$F$bM-L>$G$9!K!%(B
$BM=HwCN<1$r%-!<%o!<%IE*$K=R$Y$^$9$H(B
$B!JM=Dj!K(B
$B0l=5$"$-$^$7$?$,!$A02s$NB3$-$G$9!%FbMF$H$7$F$O0l1~A02sM=9p$7$?$b$N$rM=Dj(B$B$7$F$^$9$,!$>/$7JL$NOC$K$J$C$?$j$9$k$+$b$7$l$^$;$s!%(B
$B72$O?t$"$kBe?t7O$NCf$G$b!$:G$b4pK\E*$J$b$N$G$9!JH>72$NJ}$,4pK\E*(B$B$@$H$+!$%^%0%^$NJ}$,4pK\E*$8$c$J$$$+!$$H$$$&?M$O!$CV$$$H$$$F(B...$B!K!%(B$B$I$N$h$&$J72$b@8@.7O$H4X78<0$K$h$kI=<($r;}$A$^$9$,!$6qBNE*$KM?$($i$l$?(B$B72$KBP$7!$$=$N@8@.7O$H4X78<0$r6qBNE*$KD4$Y$k$3$H$O!$$=$l$[$IMF0W$J(B$B$3$H$G$O$"$j$^$;$s!%(B
$BNc$($P(B...
$B:#2s$N!V$J$s$G$b%;%_%J!$B!VLZ!W(B(tree) $B$H8F$P$l$kAH$_9g$o$;O@E*BP>]$r9M;!$9$k$3$H$G!$(B$BA/$d$+$K2r7h$5$l$k$H$$$&$3$H$r>R2p$7$?$$$H;W$$$^$9!%(B
$BM=HwCN<1$O!$0l1~!$72O@$N=iJb!J$G$b(BSylow$B$NDjM}$O$$$j$^$;$s!K$H$7$^$9$,!$(B$B72$NDj5A$5$(CN$C$F$$$l$PM}2r$G$-$k$h$&$K?4$,$1$?$$$H;W$$$^$9!%(B$B$"$H!$(Bp$B?J?t$r0lEY$G$b8+$?$3$H$,$"$k$H!$J,$+$j$d$9$$ItJ,$b$"$k$+$b(B$B$7$l$^$;$s!%!J$=$l$G$OJ*B-$j$J$$!$$H$$$&?M$O!$;29MJ88%$G$bD/$a$F$_$k$+!$(B$B:G9b%&%'%$%H$N7W;;$G$b$7$F$*$$$F$/$@$5$$!K(B
$BM=Dj(B :
$B;29MJ88%(B :
$B:#2s$NH/I=$NFbMF$G$O!$$3$NK\$NA0H>$G07$o$l$F$$$kFbMF$rOC$9M=Dj$G$9!%(B$BK\Ev$O!$(Bp$B?JBe?t72$NI=8=O@$d!$4X?tBN>e$N(B GL(2) $B$NN%;6ItJ,72$X$N1~MQEy!$(B$B$$$m$$$m$HLLGr$$%F!<%^$b$"$k$N$G$9$,!$$=$l$i$K$D$$$FOC$9;~4V$OL5$$$H(B$B;W$$$^$9$N$G!$6=L#$N$"$k?M$O!$$3$NK\$r;2>H$7$F$_$F$/$@$5$$!%(B
$B$H$$$&Fs$D$NLdBj$O!$I=8=O@$N:GBg$N%F!<%^$N0l$D$G$"$k$H$$$($^$9!%$3$NLdBj(B$B$O!$72$dI=8=$N%?%$%W$K$h$C$F$O2r7h$5$l$F$$$k$b$N$N!$$^$@$^$@L$2r7h$NItJ,(B$B$bB?$/!$0lHL$K$OFq$7$$LdBj$G$9!%(B
$B:G9b%&%'%$%HM}O@$O!$H>C1=c(BLie$B72$NM-8B$B$F!$>e5-Fs$D$NLdBj$N2r$rM?$($k$b$N$G$9!%$3$l$O!$7k2L<+BN$,=EMW$G$"$k$3$H(B$B$OL^O@$N$3$H!$99$KL58B$B$b=EMW$G$"$j!$8=Be$NH>C1=c(BLie$B72$NI=8=O@$K$H$C$F$J$/$F$O$J$i$J$$$b$N$G$"(B$B$k$H$$$($^$9!%(B
$B:#2s$O!$$^$:(BGL(n,\mathbb{C})$B$N@5B'I=8=$N>l9g$K:G9b%&%'%$%HM}O@$r>ZL@$7!$(B$B$=$l$rMQ$$$F!$$$$/$D$+$N>l9g$K6qBNE*$JJ,2r$r7W;;$7$?$$$H;W$$$^$9!%(B
$BM=Dj$O0J2<$NDL$j$G$9!%(B
$BFsF|4V$K$o$+$l$kM=Dj$K$J$C$F$$$k$N$G!$0lF|L\$O$^$::G9b%&%'%$%HM}O@$r$7$?(B$B$$$H;W$$$^$9!%;D$j$N1~MQ$OFsF|L\$K$J$k$H;W$$$^$9!%(B$BM=HwCN<1$H$7$F$O!$I=8=O@$N4pK\E*$J8@MU$dL?Bj!J(BSchur$B$NJdBjDxEY!K!$@~7ABe(B$B?t$HJ#AG4X?tO@!JElBg?t3X2J$,;M3X4|$K07$&FbMFDxEY!K$,$"$l$P==J,$G$9!%(B
$B%U%!%$%P!$B>e$N4v2?3XE*9=B$6I=jE*$K<+L@$J9=B$$rE=$j9g$o$;$F:n$i$l$F(B$B$$$k$3$H$,$h$/$"$j$^$9!#(B1958$BG/!"(BA.Haefliger$B$O$=$N$h$&$J9=B$$r0lHL2=$7$?35G0$G(B$B$"$k(BΓ-$B9=B$$$$&$b$N$rDj5A$7$^$7$?!#(B$B$=$7$F!"(B1970$BG/$K$O0LAj72$N
$BDjM}<+BN$H$F$bH~$7$$$b$N$G$9$,!"(B$B;d$OB?MMBN$N9=B$$r(B"$BE=$j$"$o$;(B"$B$G5-=R$7$h$&$H$9$k(BΓ-$B9=B$$N35G0$NA3$5$K$b6/$$46LC$r$B;d$NH/I=$O!"$3$N46F0$rB>$N?M$K$bEA$($i$l$?$i$H;W$$9T$&(B$B$b$N$G$9!#(B$B:#2s$NH/I=$OFC$KB>$NJ,Ln$NJ}$,B?$$$H;W$o$l$k$N$G!"(B$B35G0$N<+A3$5$,EA$o$k$h$&$KG[N8$7$FH/I=$7$?$$$H;W$$$^$9!#(B
$BM=HwCN<1$OFC$KI,MW$"$j$^$;$s!#(BBrown$B$NI=8=DjM}$H(BGromov-Phillips$B$NDjM}$r;H$$$^$9$,!"(B$B@bL@$O$9$k$N$GCN$i$J$/$F$bLdBj$"$j$^$;$s!#(B
$B;~4V$N4X78$b$"$j!";vA0$K(BTeX$B$GA4$FBG$C$F$*$-H/I=$G$O35(B$BG0$N@bL@$K=EE@$r$$$F:Y$+$$>ZL@$O$"$^$j$7$J$$$h$&$K$7$^$9!#(BTeX,DVI$B%U%!%$%k$NCV$->l$O0J2<$G$9!#(Bhttp://www.ms.u-tokyo.ac.jp/~open/tex.html
$B!&;29MJ88%!'(B
$BBe?tE*?t$NBP?t$N0l$BD61[?tO@$K$*$1$kM-L>$JDjM}$N0l$D$G$9$,!$(B$B:#2s$O$3$l$N(Bp$B?JHG!JIaDL$NBP?t4X?t$NBe$o$j$K!V(Bp$B?JBP?t4X?t!W$r;H$&!K(B$B$G$"$k(BBrumer$B$NDjM}$N>ZL@$r$7$?$$$H;W$$$^$9!%(B
$B$^$?$3$NDjM}$N1~MQ$H$7$F!V(BAbel$BBN$N(BLeopoldt$BM=A[!W$,F3$+$l$^$9!%(B$B$3$N1~MQ$K$D$$$F$b!J(BLeopoldt$BM=A[$N
$BBe?tBN$N@0?t4D$d(Bp$B?J?t$NDj5A!$$*$h$S4JC1$J@-Dj$7$^$9!%(BBaker$B$NDjM}$OCN$i$J$/$F9=$$$^$;$s!%(B
3 $B7n(B 3 $BF|!';32<29;a!X2DJ,(B Hilbert $B6u4V$,@~$N2D;;@Q$KF1Aj$G$"$k$3$H$K$D$$$F!Y(B
$B!&(B\ell2 $B$+$iE@$rDI$$=P$9(B
$B!&(B\ell2 $B$d(B \mathbb{R}\mathbb{N} $B$+$i(B$B$d$;$?=89g$rDI$$=P$9(B
$B!&F1Aj
$B!&2D;;8D$N$d$;$?=89g$rC`
$B$H$$$&$3$H$G$9!%(B$B$3$l$K$h$j!$F1Aj$r>ZL@$9$k$?$a$N:G8e$N>cJI$,=|$+$l$?$3$H$K$J$j$^$9!%(B
2 $B7n(B 24 $BF|!';32<29;a!X2DJ,(B Hilbert $B6u4V$,@~$N2D;;@Q$KF1Aj$G$"$k$3$H$K$D$$$F!Y(B
2 $B7n(B 17 $BF|!';32<29;a!X2DJ,(B Hilbert $B6u4V$,@~$N2D;;@Q$KF1Aj$G$"$k$3$H$K$D$$$F!Y(B
$B!V40Hw5wN%6u4V!W!V!JL58B8D$N!KD>@Q6u4V!W!V(BTietze $B$N3HD%DjM}!W(B
$B$J$I$G$9!J=iEyE*$J>ZL@$G$"$k$3$H$,$*J,$+$j$$$?$@$1$k$G$7$g$&!K!%(B
$BDj5A!$%"%$%=%H%T!$BF1Aj
[1]
M. Frechet, "Les espaces abstraits", Gauthier-Villars, Paris, 1928. [2]
S. Banach, "Theorie des operations lineaires", Monografie Mat. PWN, Warsaw, 1932 [3]
R. D. Anderson and R H Bing. "A complete elementary proof that
Hilbert space is homeomorphic to the countable infinite product of lines"
Bull. Amer. Math. Soc. 74 (1968) 771-92.
2 $B7n(B 10 $BF|!'0$It5*9T;a!X:G9b%&%'%$%HM}O@$H$=$N1~MQ!Y(B
2 $B7n(B 3 $BF|!'0KF#E/;K;a!X<+M372$HLZ!Y(B
(1)
$B9TNs<0$,(B1$B$H$J$k@0?t78?t$N(B2$BhK!(B$B$K4X$7$F72$r$J$7$^$9!%$H$3$m$G!$(BSL(2,Z) $B$O!$(B
$B!V(Ba,b $B$G@8@.$5$l!$4X78<0$,(B a4 = 1, (ab)3 = a2 $B$GM?$($i$l$?72!W(B
$B$HF17A$K$J$j$^$9!%2?8N$G$7$g$&$+!)(B(2)
$BA4$/4X78<0$r;}$?$J$$72$r!V<+M372!W$H$$$$$^$9!%<+M372$O72$NCf$G$b!$(B$B:G$b!VC1=c!W$J$b$N$G$9$,!$$=$N6qBNE*$J@-$B$"$j$^$;$s!%(B$BNc$($P!$0l8+Ev$?$jA0$K$b;W$($kL?Bj!X<+M372$NItJ,72$O<+M372$G$"$k!Y(B...$B$O$I$&$d$C$F>ZL@$7$?$i$$$$$N$G$7$g$&$+!)(B
$B$^$?!$6qBNE*$J<+M372$N6qBNE*$JItJ,72$,M?$($i$l$?;~!$$=$N@8@.7O$O(B$B$I$N$h$&$K$9$l$PF@$i$l$k$N$G$7$g$&$+!)(B (3)
3$B$D$N72(B G, H, A $B$HC1
1. $B<+M372!$%"%^%k%,%`!$LZ(B 2. $BLZ$K:nMQ$9$k72(B 3. $B:nMQ$N4pK\NN0h$H%"%^%k%,%`(B 4. $B0K86$NDjM}(B
1 $B7n(B 27 $BF|!'0$It5*9T;a!X:G9b%&%'%$%HM}O@$H$=$N1~MQ!Y(B
$B!&(B $BM?$($i$l$?72$N4{LsI=8=$rA4$FJ,N`$;$h!%(B $B!&(B $BM?$($i$l$?I=8=$r4{LsJ,2r$;$h!%(B
1 $B7n(B 20 $BF|!'LnBt7<;a!X0LAj6u4V$N(BΓ-$B9=B$$H3+B?MMBN>e$NMUAX9=B$$NJ,N`$K$D$$$F!Y(B
$B!VKd$a9~$_$H$O$a9~$_!W(B $BB-N)@55W(B $B4dGH=qE9(B
$BH/I=$NFbMF$OKX$I$3$NK\$NBh#5>O$NFbMF$=$N$b$N$G$9!#(B
1 $B7n(B 13 $BF|!';3K\=$;J;a!X(BBrumer$B$NDjM}$H(BLeopoldt$BM=A[!Y(B